
NOV
D E C
2017

co
de

m
ag

.c
om

 -
TH

E
LE

A
D

IN
G

 IN
D

EP
EN

D
EN

T
D

EV
EL

O
PE

R
M

AG
A

ZI
N

E
- U

S
 $

 5
.9

5
 C

an
 $

 8
.9

5
Angular, Machine Learning, Azure Functions, Xamarin, Python

Spelunking through Legacy Code

Introduction to NativeScript

Using Python’s Scikit-learn

Connect to
the Future with
Azure Functions

4 codemag.com

US subscriptions are US $29.99 for one year. Subscriptions outside the US pay US $44.99. Payments should be made in US dollars drawn on a US bank. American Express,
MasterCard, Visa, and Discover credit cards are accepted. Bill me option is available only for US subscriptions. Back issues are available. For subscription information,
send e-mail to subscriptions@codemag.com.

Subscribe online at codemag.com

CODE Component Developer Magazine (ISSN # 1547-5166) is published bimonthly by EPS Software Corporation, 6605 Cypresswood Drive, Suite 300, Spring, TX 77379 U.S.A.
POSTMASTER: Send address changes to CODE Component Developer Magazine, 6605 Cypresswood Drive, Suite 300, Spring, TX 77379 U.S.A.

Canadian Subscriptions: Canada Post Agreement Number 7178957. Send change address information and blocks of undeliverable copies to IBC, 7485 Bath Road, Mississauga,
ON L4T 4C1, Canada.

TABLE OF CONTENTS

4 codemag.comTable of Contents

58 Implementing Machine Learning Using Python
and Scikit-learn
Instead of implementing machine learning algorithms manually,
Wei-Meng found that someone else had already done the hard part.
Come along as he explores a Python tool, called Scikit-learn,
and builds a couple of models.
Wei-Meng Lee

66 Software Archaeology
If you’ve ever had to step through legacy code—even your own—you
understand what a mystery some of it can be. Chris provides some
tips and tricks for figuring it out.
Chris G. Williams

70 Does Anybody Really Know What Time It Is:
Dates and Times across Time Zones
Since cloud computing came to town, you can’t count on your system’s
software and appliances all being in the same time zone. Mike addresses
some thorny issues and helps you keep your data up to date.
Mike Yeager

Columns
74 Managed Coder: On Professionalism

Ted Neward

Departments
6 Editorial

19 Advertisers Index

73 Code Compilers

Features
8 Logging in Angular Applications

Continuing his series on Angular, Paul looks at logging as a reporting tool
for debugging, warnings, errors, and other types of messages, as well
as calling classes to log to the console, local storage, and Web API.
Paul D. Sheriff

18 Microsoft Teams: The Developer Story
If you were wondering how to make sure that your team communicates
well, you’ll want to follow along closely as Sahil makes a bot using
Microsoft Teams.
Sahil Malik

22 Legal Notes: Should Software Developers
Be Subject to Professional Standards
of Ethical Conduct?
John takes a look at what makes a person a “professional” and
how the development climate is changing.
John V. Petersen

24 An Introduction to Native Android and
iOS Development with NativeScript
These days, your code really must work across all of the various platforms.
Unless you plan to learn a lot of languages, you’ll want to apply Nic’s tips
for using NativeScript.
Nic Raboy

30 SQL Server Reporting Services: Eight Power Tips
Kevin looks at his favorite reporting tool (SSRS) and shows you how
to maximize your users’ experience.
Kevin S. Goff

38 Digging into Azure Functions:
It’s Time to Take Them Seriously
If you need to run discrete and small units of code in a flexible, scalable,
and cost-effective manner, you need Azure functions.
Jeffrey and Justin show you how to take advantage of them.
Jeffrey Palermo and Justin Self

44 Developing Cross-Platform Native Apps
with a Functional Scripting Language
Vassili extends his own custom scripting language for mobile development
and makes creating and placing widgets fast and easy.
Vassili Kaplan

6 codemag.com

ONLINE QUICK ID 00

used a lot of them. Our SQL Server gurus used
monitoring tools to tweak queries that were fast
in UAT (User Acceptance Testing) but slow in pro-
duction; we used other custom scripts to watch
our data connections and other metrics. Finally,
we used a tool that monitored the error rate of
our application. This tool helped target unseen
errors in our application, helping us further im-
prove our systems. Without these tools, it would
have been much more difficult to stabilize our
systems in a realistic timeframe.

The Final Lesson
When building and deploying software, it’s im-
portant at the end of the project to take a bit of
time to reflect on what went right and what went
wrong. Spend the time being introspective. Tak-
ing the time to do post-mortems on projects will
help you improve your process and insure that the
next one goes better.

Editorial

Ruby on Rails to WPF/C#. We were the original
developers on this system so it made perfect
sense for us to handle the conversion. The second
project was to convert a business-critical website
from ASP.NET Web Forms (pre-master pages, to
give you a time reference) to ASP.NET/MVC. Each
of these conversions had number of new features
added while they were being converted.

Lesson 1: Conversions are
Harder Than Meets the Eye
Converting old code can be more difficult than
writing code from scratch. During this process,
we grossly underestimated how much time it
would take to convert code. This was particularly
true for the website application. You’d think with
an existing code base, it would be simple to take
one set of code and convert it to another. That’s
a nice thought. In the span of 10+ years, lots and
lots of features are added, changed, orphaned,
and simply tweaked. Every one of those changes
required unique and individual decisions on the
part of the designers and developers. Some of the
features were better documented than others.
Converting this code took painstaking effort to
understand the intent and to make sure that in-
tent was managed in our new code properly. This
effort took much more work than we anticipated.
Which leads us to our second lesson….

Lesson 2: Set Realistic Goals
There’s a trait that most developers have: We are
eternal optimists. Given enough time up front,
we feel like super heroes and can accomplish
anything. For each project, we started with a
deadline in mind and felt positive that we could
accomplish the tasks at hand. In each case, we
were wrong. Each project missed the deadline by
six or more months. How do we, as developers,
combat the chronic lateness of our projects? One
idea that we’re looking into is to start working
on a project for a month or so before attempting
to estimate the real time to completion. In one
case, after a challenging four months of hardcore
development, we knew we weren’t going to make
our deadline. At this point, we took a pause to
come up with a realistic set of tasks remaining
and worked on a realistic timeframe for comple-
tion. We did a much better job of estimating what
was left and hit our goal within a few weeks. Set-

Lessons Learned from a
Second Trip Around the Block
The last 18 months have been very interesting at Dash Point Software, Inc (my company). Our team has
been involved in rewriting two major applications for a client. This has been an eye-opening experience
for our team. The first of these systems is a payment-processing system that we converted from

EDITORIAL

6

ting realistic goals is a challenge for all projects
and one we strive to improve.

Lesson 3:
Work/Life Balance is Important
Many nights of sleep were lost on the Web project
due to the effort of trying to meet the unrealistic
deadline. When the team stopped to re-assess our
deadline, our senior project manager told us to
make sure to add in our vacation/downtime into
the timeline. “Don’t kill yourselves over this,” I
think she said. When you’re knee deep in getting
stuff done, the idea of downtime can slip out the
window. Taking proper care of our team helped to
insure that the deadlines were met while keeping
our sanity.

Lesson 4:
A Calm Team Gets It Done!
The day had finally arrived: We were going to
ship our product! We turned off the old code at
9:00pm and started on the task of turning the
new code. The team expected to be done by 1
or 2:00am, max. Well, at 11:30am the following
day, we were still there. Every deployment has
problems. Configurations were missed, network
settings were incorrect, data conversions took
longer than anticipated, files get missed, etc. As
the saying goes, stuff happens! It’s the attitude
of the team that makes all the difference. There
are two courses of action. We can freak out and
declare that the sky is falling or we can remain
calm and work through the issues. Our team did
a marvelous job of the latter. We remained calm
and as each situation presented itself, we took
careful measure of the issue and set about fixing
the problems. One by one, we fixed our issues and
the software stabilized. Not all of the issues were
resolved in the first 48 hours. Some of them took
days—and in some cases weeks—to fix properly.
Eventually, we shored our systems up and things
are progressing well today. I firmly believe that
the team’s calm and measured demeanor helped
us greatly.

Lesson 5:
Monitoring Tools Are Invaluable
One of the saving graces in this deployment was
the tools we used to monitor our software. We

 Rod Paddock

8 codemag.comLogging in Angular Applications

ONLINE QUICK ID 1711021

Logging in Angular Applications
Programmers frequently use console.log to record errors or other informational messages in their Angular applications.
Although this is fine while debugging your application, it’s not a best practice for production applications. As Angular
is all about services, it’s a better idea to create a logging service that you can call from other services and components.

In this logging service, you can still call console.log, but
you can also modify the service later to record messages
to store them in local storage or a database table via the
Web API.

In this article, you’ll build up the logging service in a
series of steps. First, you create a simple log service class
to log messages using console.log(). Next, you add some
logging levels so you can report on debug, warning, er-
ror, and other types of log messages. Then you create a
generic logging service class to call other classes to log
to the console, local storage, and a Web API. Finally, you
create a log publishing service that reads a JSON file to
choose which log service classes to use.

A Simple Logging Service
To get started, create a very simple logging service that
only logs to the console. The point here is to replace all
of your console.log statements in your Angular applica-
tion with calls to a service. Bring up an existing Angu-
lar application or create a new one. If you don’t already
have one, add a folder named shared under the \src\app
folder. Create a new TypeScript file named log.service.ts.
Add the code shown in the following snippet.

import { Injectable } from '@angular/core';

@Injectable()
export class LogService {
 log(msg: any) {
 console.log(new Date() + ": "
 + JSON.stringify(msg));
 }
}

This code creates an injectable service that can be created
by Angular and injected into any of your Angular classes.

The log() method accepts a message that can be any type.
A new date is created so each message can be logged to
the console with the date and time attached to it. The
date/time is not that important when just logging to the
console, but once you start logging to local storage or to
a database, you want the date/time attached so you know
when the log messages was created. Notice the use of
JSON.stringify around the msg parameter. This allows you
to pass an object and it can be logged as a string.

For the purpose of following along with this article, cre-
ate a new folder called \log-test and add a log-test.
component.html page. Add a button to test the logging
service.

<button (click)="testLog()">
 Log Test
</button>

Create a log-test.component.ts TypeScript file and add
the code shown in Listing 1 to respond to the button
click event.

Add a logger variable to your constructor so Angular can
inject this service into this component. Notice that in the
testLog() method you now call the this.logger.log() instead
of console.log(). The result is the same (see Figure 1) in
that the message appears in the console window. However,
you’ve now given yourself the flexibility to log this message
to local storage, to a database table, to the console, or to
all three. And, the best part is, you don’t have to change any
code in your application, other than the code in the LogSer-
vice class. To use this service in your Angular application,
you need to import it in your app.module.ts file. Also import
the LogTestComponent you created as well.

import { LogService }
 from './shared/log.service';
import { LogTestComponent }
 from './log-test/log-test.component';

Add the LogService to the providers property in the @
NgModule statement. Add the LogTestComponent class to
the declarations property, as shown in the code snippet
below.

@NgModule({
 imports: [BrowserModule],
 declarations: [AppComponent,
 LogTestComponent],
 bootstrap: [AppComponent],
 providers: [LogService]
})
export class AppModule { }

Add the <log-test></log-test> selector on one of your
pages to display the Log Test button. Run the application

Paul D. Sheriff
www.fairwaytech.com

Paul D. Sheriff is a Business
Solutions Architect with Fair-
way Technologies, Inc. Fairway
Technologies is a premier
provider of expert technology
consulting and software devel-
opment services, helping lead-
ing firms convert requirements
into top-quality results.
Paul is also a Pluralsight au-
thor. Check out his videos at
http://www.pluralsight.com/
author/paul-sheriff.

import { Component } from "@angular/core";
import { LogService }
 from '../shared/log.service';

@Component({
 selector: "log-test",
 templateUrl: "./log-test.component.html"
})
export class LogTestComponent {
 constructor(private logger: LogService) {
 }

 testLog(): void {
 this.logger.log("Test the log() Method");
 }
}

Listing 1: The LogTestComponent to test the LogService class

9codemag.com Logging in Angular Applications

The optional parameter array means you can pass any pa-
rameters you want to be logged. For example, any of the
following calls are valid.

this.logger.log("Test 2 Parameters",
 "Paul", "Smith");

this.logger.debug("Test Mixed Parameters",
 true, false, "Paul", "Smith");

let values = ["1", "Paul", "Smith"];
this.logger.warn("Test String and Array",
 "Some log entry", values);

The writeLog() method, Listing 3, checks the level passed
by one of the methods against the value set in the level
property. This level property is checked in the shouldLog()
method. Both of these methods should now be added to
your LogService class.

The shouldLog() method determines if logging should occur
based on the level property set in the LogService class. This

and click on the Log Test button and you should see the
message appear in the console window in the F12 tools of
your browser, as shown in Figure 1.

Different Types of Logging
There are times when you might want only certain types
of logging turned on when running your application.
Many logging systems in other languages allow you to
log debug messages, informational messages, warning
messages, etc. Add this same ability to your LogService
class by adding an enumeration and a property that you
can set to control which messages to display. First, add
a LogLevel enumeration in the log.service.ts file to keep
track of what kind of logging to perform. Add this enu-
meration just after the import statement within the log.
service.ts the file. Don’t add it within the LogService
class.

export enum LogLevel {
 All = 0,
 Debug = 1,
 Info = 2,
 Warn = 3,
 Error = 4,
 Fatal = 5,
 Off = 6
}

Add a property to the LogService class named level that’s
of the type LogLevel. Default the value to the All enu-
meration. While you are adding properties, add a Bool-
ean property named logWithDate to specify whether you
wish to add the date/time to the front of your messages
or not.

level: LogLevel = LogLevel.All;
logWithDate: boolean = true;

Instead of having to set the level property prior to call-
ing your logger.log() method, add the new methods
debug, info, warn, error, and fatal to the LogService
class (Listing 2). Each one of these methods calls a
writeToLog() method passing in the message, the ap-
propriate enumeration value and an optional parameter
array. Delete the log() method you wrote previously
and replace that one method with all the methods from
Listing 2.

Figure 1: Sample of using the LogService

debug(msg: string, ...optionalParams: any[]) {
 this.writeToLog(msg, LogLevel.Debug,
 optionalParams);
}

info(msg: string, ...optionalParams: any[]) {
 this.writeToLog(msg, LogLevel.Info,
 optionalParams);
}

warn(msg: string, ...optionalParams: any[]) {
 this.writeToLog(msg, LogLevel.Warn,
 optionalParams);
}

error(msg: string, ...optionalParams: any[]) {
 this.writeToLog(msg, LogLevel.Error,
 optionalParams);
}

fatal(msg: string, ...optionalParams: any[]) {
 this.writeToLog(msg, LogLevel.Fatal,
 optionalParams);
}

log(msg: string, ...optionalParams: any[]) {
 this.writeToLog(msg, LogLevel.All,
 optionalParams);
}

Listing 2: Add methods to your LogService class to write different kinds of messages

10 codemag.comLogging in Angular Applications

variable using the JSON.stringify() method to convert
each parameter to a string, and then append a comma
after each.

private formatParams(params: any[]): string {
 let ret: string = params.join(",");

 // Is there at least one object in the array?
 if (params.some(p => typeof p == "object")) {
 ret = "";
 // Build comma-delimited string
 for (let item of params) {
 ret += JSON.stringify(item) + ",";
 }
 }

 return ret;
}

Create Log Entry Class
Instead of building a string of the log information, and
formatting the parameters in the writeToLog() method,
create a class named LogEntry to do all this for you. Place
this new class within the log.service.ts file. The LogEntry
class, shown in Listing 4, has properties for the date of
the log entry, the message to log, the log level, an array
of extra info to log, and a Boolean you set to specify to
include the date with the log message.

service is created as a singleton by Angular, so once this
level property is set, it remains that value until you change
it in your application. The shouldLog() checks the param-
eter passed in against the level property set in the Log-
Service class. If the level passed in is greater than or equal
to the level property, and logging is not turned off, then a
true value is returned from this method. A true return value
tells the writeToLog() method to log the message.

private shouldLog(level: LogLevel): boolean {
 let ret: boolean = false;

 if ((level >= this.level &&
 level !== LogLevel.Off) ||
 this.level === LogLevel.All) {
 ret = true;
 }

 return ret;
}

There’s one more method call in the writeToLog() method
called formatParams(). This method is used to create a
comma-delimited list of the parameter array. If all pa-
rameters in the array are simple data types and not an
object, then the local variable named ret is returned af-
ter the join() method is used to create a comma-delimit-
ed list from the array. If there is one object, loop through
each of the items in the params array and build the ret

export class LogEntry {
 // Public Properties
 entryDate: Date = new Date();
 message: string = "";
 level: LogLevel = LogLevel.Debug;
 extraInfo: any[] = [];
 logWithDate: boolean = true;

 buildLogString(): string {
 let ret: string = "";

 if (this.logWithDate) {
 ret = new Date() + " - ";
 }
 ret += "Type: " + LogLevel[this.level];
 ret += " - Message: " + this.message;
 if (this.extraInfo.length) {
 ret += " - Extra Info: "
 + this.formatParams(this.extraInfo);
 }

 return ret;
 }

 private formatParams(params: any[]): string {
 let ret: string = params.join(",");

 // Is there at least one object in the array?
 if (params.some(p => typeof p == "object")) {
 ret = "";
 // Build comma-delimited string
 for (let item of params) {
 ret += JSON.stringify(item) + ",";
 }
 }

 return ret;
 }
}

Listing 4: Create a LogEntry class to make creating log messages easier

private writeToLog(msg: string,
 level: LogLevel,
 params: any[]) {
 if (this.shouldLog(level)) {
 let value: string = "";

 // Build log string
 if (this.logWithDate) {
 value = new Date() + " - ";
 }
 value += "Type: " + LogLevel[this.level];

 value += " - Message: " + msg;
 if (params.length) {
 value += " - Extra Info: "
 + this.formatParams(params);
 }

 // Log the value
 console.log(value);
 }
}

Listing 3: The writeToLog() method creates the message to write into your log

11codemag.com Logging in Angular Applications

import { Observable } from 'rxjs/Observable';
import 'rxjs/add/observable/of';

import { LogEntry } from './log.service';

export abstract class LogPublisher {
 location: string;

 abstract log(record: LogEntry):
 Observable<boolean>
 abstract clear(): Observable<boolean>;
}

Now that you have the template for creating each log
publishing class, let’s start building them.

Log to Console
The first class you create to extend the LogPublisher class
writes messages to the console. You’re eventually going
to remove the call to console.log() from the LogService
class you created earlier. LogConsole is a very simple
class that displays log data to the console window using
console.log(). Add the following code below the LogPub-
lisher class in the log-publisher.ts file.

export class LogConsole extends LogPublisher {
 log(entry: LogEntry): Observable<boolean> {
 // Log to console
 console.log(entry.buildLogString());

 return Observable.of(true);
 }

 clear(): Observable<boolean> {
 console.clear();

 return Observable.of(true);
 }
}

Notice that the log() method in this class accepts an
instance of the LogEntry class. This parameter coming
in, named entry, calls the buildLogString() method to
create a string of the complete log entry data to be dis-
played to the console window. Each log() method needs
to return an observable of the type Boolean back to the
caller. Because nothing can go wrong with logging to the
console, just hard-code a True return value.

The buildLogString() method is similar to what you wrote in
the writeToLog() method earlier. This method gathers the
values from the properties of this class and returns them in
one long string that can be used to output to the console
window. Remove the formatParams() method from the Log-
Service class after you’ve built the LogEntry class. You’re
going to use this LogEntry class from each of the different
logging classes you build in the rest of this article.

Now that you have this LogEntry class built, and have
removed the formatParams() from the LogService class,
rewrite the writeToLog() method to look like the code
below.

private writeToLog(msg: string,
 level: LogLevel,
 params: any[]) {
 if (this.shouldLog(level)) {
 let entry: LogEntry = new LogEntry();

 entry.message = msg;
 entry.level = level;
 entry.extraInfo = params;
 entry.logWithDate = this.logWithDate;

 console.log(entry.buildLogString());
 }
}

After modifying the writeToLog() method, rerun the ap-
plication and you should still see your log messages be-
ing displayed in the console window.

Log Publishing System
When logging exceptions, or any kind of message, it’s a
good idea to write those log entries to different locations
in case one of those locations isn’t accessible. In this
way, you stand a better chance of not losing any messag-
es. To do this, you need to create three different classes
for logging. The first publisher is a LogConsole class that
logs to the console window. The second publisher is Log
LocalStorage to log messages to Web local storage. The
third publisher is LogWebApi for calling a Web API to log
messages to a backend table in a database.

Instead of hard-coding each of these classes in the Log-
Service class, you’re going to create a publishers prop-
erty (Figure 2), which is an array of an abstract class
called LogPublisher. Each of the logging classes you cre-
ate extends this abstract class.

The LogPublisher class contains one property named lo-
cation. This property is used to set the key for local stor-
age and the URL for the Web API. This class also needs
two methods: log() and clear(). The log() method is over-
ridden in each class that extends LogPublisher and is re-
sponsible for performing the logging. The clear() method
removes all log entries from the data store.

Add a new TypeScript file named log-publishers.ts to the \
shared folder in your project. You’re going to need a few im-
port statements at the top of this file. In fact, you’re going
to add more later, but for now, just add Observable, the Ob-
servable of, and LogEntry classes. Write the code shown in
the next snippet to create your abstract LogPublisher class.

Figure 2: Create an abstract class from which all your
log publishers inherit.

12 codemag.comLogging in Angular Applications

vice class so the publishers array can be assigned from the
LogPublishersService (Figure 3). At first, you’re going to just
hard-code each of the log classes, but later in this article,
you’re going to read the list publishers from a JSON file.

The LogPublishersService class (Listing 5) needs to be
defined as an injectable service so Angular can inject it
into the LogService class. In the constructor of this class,
you call a method named buildPublishers(). This method
creates each instance of a LogPublisher and adds each
instance to the publishers array. For now, just add the
code to create new instance of the LogConsole class and
push it onto the publishers array.

Update AppModule Class
Like any Angular service, once you create it, you must reg-
ister it in the app.module.ts file by importing it and adding
it to the providers property of the @NgModule. Open app.
module.ts and add the import near the top of the file.

import { LogPublishersService }
 from "./shared/log-publishers.service";

Next, add the service to the providers property in the @
NgModule decorator function.

@NgModule({
 imports: [BrowserModule, FormsModule,
 HttpModule],
 declarations: [AppComponent,
 LogTestComponent],
 bootstrap: [AppComponent],
 providers: [LogService, LogPublishersService]
})

Modify the LogService Class
It’s now time to modify the LogService class to use this Log-
PublishersService class. Open the log.service.ts TypeScript
file and add two import statements near the top of the file.

import { LogPublisher } from "./log-publishers";
import { LogPublishersService }
 from "./shared/log-publishers.service";

Add a property named publishers that is an array of Log-
Publisher types.

publishers: LogPublisher[];

Add a constructor to the LogService class so Angular in-
jects the LogPublishersService. Within this constructor,
take the publishers property from the LogPublishersSer-
vice and assign the contents to the publishers property
in the LogService class.

constructor(private publishersService:
 LogPublishersService) {
 // Set publishers
 this.publishers =
 this.publishersService.publishers;
}

Locate the writeToLog() method and remove the follow-
ing line of code from this method.

console.log(entry.buildLogString());

The clear() method must also be overridden in any class
that extends the LogPublisher class. For the console win-
dow, call the clear() method to clear all messages pub-
lished to the console window.

The Log Publishers Service
As you saw in Figure 2, there’s a publishers array property in
the LogService class. You need to populate this array with in-
stances of LogPublisher classes. The only class you’ve built so
far is LogConsole, but soon you’ll build LogLocalStorage and
LogWebApi classes too. Instead of building the list of pub-
lishers in the LogService class, create another service class
to build the list of log publishers. This service class, named
LogPublishersService, is responsible for building the array of
log publishing classes. This service is passed into the LogSer-

Figure 3: The LogPublishersService class builds the list of publishers that’s consumed by the
LogService class.

import { Injectable } from '@angular/core';

import { LogPublisher, LogConsole }
 from "./log-publishers";

@Injectable()
export class LogPublishersService {
 constructor() {
 // Build publishers arrays
 this.buildPublishers();
 }

 // Public properties
 publishers: LogPublisher[] = [];

 // Build publishers array
 buildPublishers(): void {
 // Create instance of LogConsole Class
 this.publishers.push(new LogConsole());
 }
}

Listing 5: The LogPublishersService is responsible for creating a list of publishing objects

13codemag.com Logging in Angular Applications

cal storage using the getItem() method. Parse that into
an array of LogEntry objects, or if there was no value
stored in that key location, return an empty array. Push
the new LogEntry object onto the array, stringify the
new array, and place the stringified array into local
storage.

One note of caution on local storage; there’s a limit set
by each browser to how much data can be stored. The
limits vary between browsers, and as of this writing, it
varies from 2MB to 10MB. You might want to consider
writing some additional code in the catch block of the
log() method to remove the oldest values from the array
prior to storing the new log entry.

The clear() method is used to clear local storage at the
specified key location. Call the removeItem() method of
the localStorage object to clear all values within this lo-
cation.

Now that you have your new class to store log entries
into local storage, you need to add this to the publishers
array. Open the log-publishers.service.ts file and modify
the import statement to include your new LogLocalStor-
age class.

import { LogPublisher, LogConsole,
 LogLocalStorage }
 from "./log-publishers";

Modify the buildPublishers() method of the LogPub-
lishersService class to create an instance of the LogLo-
calStorage class and push it onto the publishers array as
shown in the following code.

buildPublishers(): void {
 // Create instance of LogConsole Class
 this.publishers.push(new LogConsole());

 // Create instance of LogLocalStorage Class
 this.publishers.push(new LogLocalStorage());
}

Where you removed the above line of code, add a for
loop to iterate over the list of publishers. Each time
through the loop, invoke the log() method of the log-
ger, passing in the LogEntry object. Because the log()
method returns an observable, you should subscribe to
the result and write the Boolean return value to the
console window.

for (let logger of this.publishers) {
 logger.log(entry)
 .subscribe(response =>
 console.log(response));
}

Once again, run the application and click the Test Log
button to see a log entry written to the console window.
You have added a few classes and a service only to pub-
lish to the console window; you should be able to see the
advantages of this kind of approach. You can now add
new LogPublisher classes, add them to the array in the
LogPublishersService class, and you’re now publishing to
an additional location.

Log to Local Storage
The next publisher to add is one that stores an array of
LogEntry objects into your Web browser’s local storage.
Open the log-publishers.ts file and add the code shown
in Listing 6 to this file. The LogLocalStorage class needs
to set a key value for setting the items into local storage.
Use the location property to set the key value to use. In
this case, the location is set in the constructor. When you
have a constructor in a derived class, you always need to
call the super() method in order to invoke the construc-
tor of the base class.

Local storage allows you to store quite a bit of data,
so let’s add each log entry each time the log() method
is called. The setItem() method is used to set a value
into local storage. If you call setItem() and pass in a
value, any old value in the key location is replaced with
the new value. Read the previous values first from lo-

export class LogLocalStorage
 extends LogPublisher {
 constructor() {
 // Must call super() from derived classes
 super();
 // Set location
 this.location = "logging";
 }

 // Append log entry to local storage
 log(entry: LogEntry): Observable<boolean> {
 let ret: boolean = false;
 let values: LogEntry[];

 try {
 // Get previous values from local storage
 values = JSON.parse(
 localStorage.getItem(this.location))
 || [];
 // Add new log entry to array
 values.push(entry);

 // Store array into local storage
 localStorage.setItem(this.location,
 JSON.stringify(values));

 // Set return value
 ret = true;
 } catch (ex) {
 // Display error in console
 console.log(ex);
 }

 return Observable.of(ret);
 }

 // Clear all log entries from local storage
 clear(): Observable<boolean> {
 localStorage.removeItem(this.location);
 return Observable.of(true);
 }
}

Listing 6: Create a LogLocalStorageService class to store messages into local storage

14 codemag.comLogging in Angular Applications

Sample Code

You can download the sample
code for this article on the CODE
Magazine website or by visiting
my website at http://www.pdsa.com/
downloads. Select PDSA Articles,
and then select “Code Magazine -
Logging in Angular Applications”
from the drop-down list.

 from '@angular/http';
import 'rxjs/add/operator/map';
import 'rxjs/add/operator/catch';
import 'rxjs/add/observable/throw';

Add the LogWebApi class shown in Listing 8 at the bottom
of the log-publishers.ts file. The constructor for this class
is very similar to the one you wrote for the LogLocalStor-
age class. You do need to include the HTTP service as you’re
going to need this to call the Web API. You also must call
super() to execute the constructor of the base class. Final-
ly, set the location property to the URL of the Web API call.

The log() method accepts a LogEntry object that’s sent to
the Web API method. Because you’re performing a POST to
the Web API, you need to create the appropriate headers to
specify the content type you’re sending as application/json.
The post() method on the Angular HTTP service is called to
pass the LogEntry object to the Web API class you created.

You also need a clear() method in this class to override
the abstract method in the base class. In order to keep
the length of this article shorter, I’m not showing how to
do clear log entries, but it’s similar to the log() method.
You call a Web API method that writes the appropriate
SQL to delete all rows from your log table in your data-
base.

Open the log-publishers.service.ts file and modify the
import statement to include your new LogWebApi class.

import { LogPublisher, LogConsole,
 LogLocalStorage, LogWebApi }
 from "./log-publishers";

Open your log-publishers.service.ts file and add an im-
port for the HTTP service near the top of the file.

import { Http } from '@angular/http';

Next, add the HTTP service to the constructor of this class.

constructor(private http: Http) {
 // Build publishers arrays
 this.buildPublishers();
}

Finally, in the buildPublishers() method, create a new
instance of the LogWebApi class and pass in the HTTP
service as shown in the code below.

buildPublishers(): void {
 // Create instance of LogConsole Class
 this.publishers.push(new LogConsole());

You can now re-run the application and you should be
logging to both the console window and to local storage.
To test this, set a break point in the log() method of the
LogLocalStorage class and see if it retrieves the previous
values that you logged into local storage.

Log to Web API
The last logging class you are going to create is one to send
an instance of the LogEntry class to a Web API method. From
this Web API you could then write code to store the log entry
into a database table. I’m not going to provide you with a
table—I’ll leave that to you. I’m using Visual Studio and C#
to create my Web API calls, so I’m going to add a C# class to
my project that’s the same name and has the same proper-
ties as the LogEntry class I created in Angular.

public class LogEntry
{
 public DateTime EntryDate { get; set; }
 public string Message { get; set; }
 public LogLevel Level { get; set; }
 public object[] ExtraInfo { get; set; }
}

I’m also adding a C# enumeration to my project to map
to the TypeScript LoggingLevel enumeration.

public enum LogLevel
{
 All = 0,
 Debug = 1,
 Info = 2,
 Warn = 3,
 Error = 4,
 Fatal = 5,
 Off = 6
}

Finally, I’m going to add a Web API controller class (List-
ing 7) to my project. This class has one method at this
point to allow Angular to post the LogEntry record to
this method. It’s in this Post() method that you write
the code to store the log data into a database table. For
purposes of this article, I’m just going to return a result
of OK (true) back to the caller.

Now that you have the Web API classes created, you can
go back to the log-publishers.ts file and add some import
statements for calling a Web API. Add the following im-
port statements near the top of this file.

import { Http, Response,
 Headers, RequestOptions }

public class LogController : ApiController
{
 // POST api/<controller>
 [HttpPost]
 public IHttpActionResult Post(
 [FromBody]LogEntry value)
 {
 IHttpActionResult ret;

 // TODO: Write code to store logging
 // data in a database table

 // Return OK for now
 ret = Ok(true);

 return ret;
 }
}

Listing 7: The LogController allows you to store log entries via a Web API call

15codemag.com Logging in Angular Applications

from Listing 9. Each of the object literals in this JSON
array relate to one of the classes you created for logging
to the console, local storage, and the Web API.

Add a few more import statements to your log-publish-
ers.service.ts file.

import { Observable } from 'rxjs/Observable';
import 'rxjs/add/operator/map';
import 'rxjs/add/operator/catch';
import 'rxjs/add/observable/throw';

Add a constant just after these imports, to point to this
file.

const PUBLISHERS_FILE =
 "/src/app/assets/log-publishers.json";

In the LogPublishersService class, add a new method named
handleErrors (Listing 10) to take care of any errors that
might happen during any HTTP service calls. Also, in the
LogPublishersService class, create a new method to read the
data from this JSON file. Let’s call this method getLoggers().
Because you already injected the HTTP service into this class,
you can use this service to read from the JSON file.

getLoggers(): Observable<LogPublisherConfig[]> {
 return this.http.get(PUBLISHERS_FILE)
 .map(response => response.json())
 .catch(this.handleErrors);
}

Now that you have this method to return the array from
this file, modify the buildPublishers() method to sub-
scribe to this Observable array of LogPublisherConfig
object. The new code for the buildPublishers() method is
shown in Listing 11.

The buildPublishers() method calls the getLoggers()
method and subscribes to the output from this method.

 // Create instance of LogLocalStorage Class
 this.publishers.push(new LogLocalStorage());

 // Create instance of LogWebApi Class
 this.publishers.push(
 new LogWebApi(this.http));
}

You need to register the HTTP service with your AppMod-
ule. Open app.module.ts and add the following import
near the top of this file.

import { HttpModule } from '@angular/http';

Add the HttpModule to the imports property in the
@NgModule() function decorator.

imports: [BrowserModule, HttpModule],

Now that you have this new publisher added to the array,
you should be able to run your logging application, and
when you click on the Log Test button, you should see
that it’s making the call to your Web API method.

Read Publishers from JSON File
Open the log-publishers.ts file and add a new class called
LogPublisherConfig. This class is going to hold the indi-
vidual objects read from a JSON file you see in Listing 9.

class LogPublisherConfig {
 loggerName: string;
 loggerLocation: string;
 isActive: boolean;
}

Build the JSON file by adding an \assets folder under-
neath the \src\app folder. Add a JSON file called log-
publishers.json in the \assets folder and add the code

export class LogWebApi extends LogPublisher {
 constructor(private http: Http) {
 // Must call super() from derived classes
 super();
 // Set location
 this.location = "/api/log";
 }

 // Add log entry to back end data store
 log(entry: LogEntry): Observable<boolean> {
 let headers = new Headers(
 { 'Content-Type': 'application/json' });
 let options = new
 RequestOptions({ headers: headers });

 return this.http.post(this.location,
 entry, options)
 .map(response => response.json())
 .catch(this.handleErrors);
 }

 // Clear all log entries from local storage
 clear(): Observable<boolean> {

 // TODO: Call Web API to clear all values
 return Observable.of(true);
 }

 private handleErrors(error: any):
 Observable<any> {
 let errors: string[] = [];
 let msg: string = "";

 msg = "Status: " + error.status;
 msg += " - Status Text: " + error.statusText;
 if (error.json()) {
 msg += " - Exception Message: " +
 error.json().exceptionMessage;
 }
 errors.push(msg);

 console.error('An error occurred', errors);

 return Observable.throw(errors);
 }
}

Listing 8: Create a LogWebApiService class to call a Web API for tracking log messages

SPONSORED SIDEBAR:

Articles Are Great but
Sometimes You Need
More Help

Sometimes an article can get
you started but then you find
you need more. The Angular
experts at CODE Consulting
are ready to help your team
with all your Angular project
needs. Whether it’s a free (yes,
free!) hour-long mentoring
session, comprehensive
instructor-led training courses,
jumping in and coding to help
to meet a looming deadline,
or helping you architect and
code your Angular app from
beginning to end, consider
the CODE Consulting team
as your go-to resource for all
your Angular development
needs. For more information
visit www.codemag.com/
consulting or email us at
info@codemag.com and
ask about scheduling a free
hour-long mentoring session
or tell us how our experienced
CODE Consultants can help
you today.

16 codemag.comLogging in Angular Applications

property of each LogPublisher class. The newly instanti-
ated publisher object is then added to the publishers
array property. As all of this happens in the constructor
of this service class; the publishers array is already set
to the list of publishers to use by the time it is injected
into the LogService class. You should be able to run the
Angular application and click on the Log Test button and
see the log messages published to all publishers marked
as isActive in the JSON file.

Summary
It’s always a best practice to log messages as you move
throughout your Angular applications. Exceptions should
always be logged, but you may also wish to log the de-
bug, warning, and informational messages as well. Cre-
ating a flexible logging system like the one presented in
this article assists with this best practice. Using a con-
figuration JSON file to store which publishers you wish to
log to saves having to hard-code publishers within your
log service class.

The output is an array of LogPublisherConfig objects.
The array of configuration objects is filtered to only loop
through those that have their isActive property set to a
True value. For each iteration through the loop, check the
loggerName property and compare that value with those
listed in each case statement. If a match is found, a new
instance of the corresponding LogPublisher class is cre-
ated. The loggerLocation property is set to the location

private handleErrors(error: any):
 Observable<any> {
 let errors: string[] = [];
 let msg: string = "";

 msg = "Status: " + error.status;
 msg += " - Status Text: " + error.statusText;
 if (error.json()) {
 msg += " - Exception Message: "
 + error.json().exceptionMessage;
 }
 errors.push(msg);

 console.error('An error occurred', errors);

 return Observable.throw(errors);
}

Listing 10: You always should have a method to handle errors when using the HTTP service

buildPublishers(): void {
 let logPub: LogPublisher;

 this.getLoggers().subscribe(response => {
 for (let pub of response.filter(p => p.isActive)) {
 switch (pub.loggerName.toLowerCase()) {
 case "console":
 logPub = new LogConsole();
 break;
 case "localstorage":
 logPub = new LogLocalStorage();
 break;
 case "webapi":
 logPub = new LogWebApi(this.http);
 break;
 }
 // Set location of logging
 logPub.location = pub.loggerLocation;
 // Add publisher to array
 this.publishers.push(logPub);
 }
 });
}

Listing 11: Create your array of publishers by reading the values from a JSON file

[
 {
 "loggerName": "console",
 "loggerLocation": "",
 "isActive": true
 },
 {
 "loggerName": "localstorage",
 "loggerLocation": "logging",

 "isActive": true
 },
 {
 "loggerName": "webapi",
 "loggerLocation": "/api/log",
 "isActive": true
 }
]

Listing 9: Create a LogLocalStorageService class to store messages into local storage

 Paul D. Sheriff

18 codemag.comMicrosoft Teams: The Developer Story

ONLINE QUICK ID 1711031

Microsoft Teams: The Developer Story
Yes, I know what you’re thinking! Another day, another product. As a consultant with limited time and resources, I really
must pick and choose my battles. After all, what I choose to do also decides what I won’t be able to do. In that vein,
I think that Microsoft Teams, the newest collaboration product in Office 365, deserves a look. Microsoft Teams warrants

a look for both business users and developers. I’ll keep
this article focused on developers.

What is Microsoft Teams?
At a fundamental level, Microsoft Teams is a collabora-
tion product. It’s integrated into Office 365, but it’s a
new product built from the ground up. It can be used in
a browser, on your phone, or as a desktop application. If
you were wondering, yes, it’s internally built using Web-
based technologies such as Electron, Cordova or similar,
and the usual Web stack, such as HTML, JavaScript, etc.

What’s compelling about Teams is that it feels like a
modern product. It doesn’t feel like a dowdy old product
rooted in 2001 that doesn’t scale to modern organiza-
tion needs or work properly—or not at all—on a Mac. It’s
ready for today’s information worker! Ugh, did I just use
that term again, “information worker?” Let’s get back to
the developer story.

The Developer Story for Teams
One way to think of teams is chatrooms. It’s more than
that, of course, but at a very high level, you create chan-
nels (a.k.a chatrooms) within your organization where
people can communicate with each other. Users can also
engage in a 1:1 conversation, upload files to share with
their team, or have applications push in information in
numerous forms.

And that’s where you come in! You’re the developer, and
you can extend teams in the following ways:

• Tabs: Provides a dedicated canvas that lets team
members access your service while connected to a
channel or private chat.

• Bots: Built on the Microsoft Bot Framework, allows
team members to interact with your service via con-
versations.

• Connectors: Allow your services to send notifica-
tions into channels. These notifications can include
rich actionable messages that can expose some
user interface, allowing users to interact directly
with your service through a channel. I covered this
in the May/June issue of CODE Magazine (http://
www.codemag.com/Article/1705031).

• Extensions: Allow you to share your app’s content
directly into team conversations.

• Sending messages: Permits contact directly into a
user’s activity feed.

Tabs
Tabs allow you to embed Web pages inside a team. From
a user point of view, this is extremely simple to do. Just
visit any team channel, and choose to click on the + but-
ton, as shown in Figure 1.

Clicking on the Add button brings up a dialog box, as
shown in Figure 2, that allows you to embed any relevant
content right inside a team.

Go ahead and try embedding any tab inside your channel.
These are just Web pages. You can create a simple website
with anything you wish in it. It could be dashboards, de-
tail pages; really, just about anything. And you register it
using a simple manifest file. When you create this website
that works as a tab, you have a choice of implementing
one or two pages.

• The configuration page: This is optional. Configu-
rable tabs give you the opportunity to allow the
user to specify some configuration information be-
fore the tab is added. You can also allow users to
update a tab after they add it via this page.

• The content page: This page is where the function-
ality of your tab lives; it’s the page the user sees
when the user visits the tab via a team.

You can also add tabs in one of two scopes. One way is in
the team scope where you add tabs to a channel. These
are currently configurable tabs only. The other way is
that you can add them in personal scope, where the user
interacts with the tab via the app bar. Currently, only
static tabs are allowed in the personal scope.

Additionally, your website that works as a tab, i.e., the
content page, must follow the following rules

• It must be hosted on https
• The content must work in an iframe, and you must

set the following HTTP header:

Content-Security-Policy:
 frame-ancestors teams.microsoft.com
 *.teams.microsoft.com *.skype.com

• For IE11, you also need to set the X-Content-Secu-
rity-Policy header.

• Once your page loads, you need to call the Java
Script method “microsoftTeams.initialize()” to
show your page.

• You also need a manifest file, and all URLs being
used within your tab must be under the “validDo-

Name Autor
www.internet.com

asdfasdfasdfasdfker, a .NET
author, consultant and trainer.

Sahilasfasdfasdfasdfasdfasdfd-
fainings are full of humor and
practical nuggets. You can find
more about his trainings at
http://wwasdfasdfasfasdfasdf

Sahil Malik
www.winsmarts.com
@sahilmalik

Sahil Malik is a Microsoft MVP,
INETA speaker, a .NET author,
consultant, and trainer.

Sahil loves interacting with
fellow geeks in real time.
His talks and trainings are
full of humor and practical
nuggets. You can find more
about his training at
http://www.winsmarts.com/
training.aspx.

His areas of expertise are cross-
platform Mobile app develop-
ment, Microsoft anything,
and security and identity.

Figure 1: Adding a tab

19codemag.com Microsoft Teams: The Developer Story

NOV
D E C
2017

co
de

m
ag

.c
om

 -
TH

E
LE

A
D

IN
G

 IN
D

EP
EN

D
EN

T
D

EV
EL

O
PE

R
M

AG
A

ZI
N

E
- U

S
 $

 5
.9

5
 C

an
 $

 8
.9

5

Angular, Machine Learning, Azure Functions, Xamarin, Python

Spelunking through Legacy Code

Introduction to NativeScript

Using Python’s Scikit-learn

Connect to
the Future with
Azure Functions

Advertising Sales:
Tammy Ferguson
832-717-4445 ext 26
tammy@codemag.com

CODE Consulting

 www.codemag.com/techhelp 2, 67

CODE Divisions

 www.codemag.com 75

CODE Framework

 www.codemag.com/framework 33

CODE Magazine

 www.codemag.com 57, 71

CODE Staffing

 www.codemag.com/staffing 17

dtSearch

 www.dtSearch.com 69

JetBrains

 www.jetbrains.com 76

LEAD Technologies

 www.leadtools.com 5

Melissa Global Intelligence

 www.melissa.com/code 7

Tower48
 www.tower48.com 49

Xamalot
 www.xamalot.com 37

Advertisers Index

This listing is provided as a courtesy to
our readers and advertisers.
The publisher assumes no responsibility
for errors or omissions.

ADVERTISERS INDEX

mains” list in your manifest. You may reference the
schema for the teams manifest file here https://
msdn.microsof t.com/en-us/microsof t-teams/
schemas.

As I mentioned earlier, your tab can have a configura-
tion page specified as the “configurationUrl” parameter
of the manifest file. There are some requirements for this
configuration page also.

• The Save button on this page is disabled by de-
fault. The idea is that when the user has finished
configuring the tab, the Save button becomes en-
abled. You can enable the Save button at the right
moment by calling the microsoftTeams.settings.
setValidityState(true) method.

• This configuration page is responsible for letting
the content page know what settings it needs to
run under. You can do so by calling the microsoft-
Teams.settings.setSettings method.

• You also have the opportunity to fire off a long-
running operation when the user hits Save. You can
register the event handler by calling the microsoft-
Teams.settings.registerOnSaveHandler method and
passing in a function. The only requirement here is
that you must complete this operation in 30 sec-
onds or Microsoft Teams terminates the operation
and shows an error message. The Save handler also
needs to notify you of success or failure. It can do
so by calling saveEvent.notifySuccess() or saveEvent.
notifyFailure() methods. The saveEvent parameter is
passed in as a parameter to the Save handler.

In either the content page or the configuration page, you
can authenticate the user by calling the microsoftTeams.
authentication.authenticate method. This may be neces- Figure 2: Tabs available out of the box

20 codemag.com

Teams, you need to add Microsoft Teams as a channel
and reuse any Microsoft App ID that you generate on
the registration page. You’ll need to update your app
package/manifest for the bot with this App ID.

2. You need to write the bot. You can do so using .NET
using the Microsoft.Bot.Connector.Teams nuget
package, or the botbuilder-teams NPM package, or
you can use the bot connector API, which is a bunch
of REST APIs allowing you to build the bot in any
platform. Imagine that you could write an iOS app
where you can say “Hey Siri, ask the Microsoft Bot
Framework to do something useful,” and then ex-
pose that same bot in a Microsoft Team.

3. Develop and test the bot using the bot framework
emulator.

4. Deploy the bot to a cloud service. Azure works fine.

Once your bot is written and ready, you need to make it
available in teams. You can sideload the bot package and
sideload it into a test team for dev purposes. Creating the
package involves creating a zip file with:

• A manifest file called manifest.json describing your
bot

• A transparent outline icon and a full-color icon
meeting certain requirements

Once the bot package is created, you simply sideload it
in a team. However, for sideloading to work, you need
to enable sideloading of apps. To enable side loading of
apps:

1. Sign in as tenant administrator.
2. Under Admin, go to Settings > Services & Add-ins

or Apps
3. Find Microsoft Teams in that list.
4. Set the settings as shown in Figure 3.

Once you’ve enabled sideloading, visit the team you wish
to sideload using the View Team menu option, as shown
in Figure 4.

Once on the View Team page, choose Sideload a bot or
tab option, as shown in Figure 5.

Choosing to sideload a bot or tab prompts you to upload
the zip file containing the packaged bot. Go ahead and
upload it. Once the bot is sideloaded, you can use it by
@mentioning it. To access it in direct chats, you can
access it either via the App home, or @mention it in
a channel.

An important thing to remember here is that removing a
bot doesn’t remove previous conversations. Ideally speak-
ing, you should sideload it into teams as a last step. You
can test the bot quite well via the bot-testing framework
beforehand.

Connectors
Connectors allow your custom code to push information
into teams. I’ve previously covered Office 365 connec-
tors in depth in the May/June issue of CODE Magazine
(http://www.codemag.com/Article/1705031).

Extensions and Sending Messages to the Activity Feed
Extensions allow users to quickly share an app’s content

sary if the user needs to first authenticate before being
able to configure a tab. For instance, you may have bug-
tracking software that you wish to add as a tab. This bug-
tracking software has its own authentication mechanism.
The microsoftTeams.authentication.authenticate method
allows you to authenticate at the bug-tracking software’s
URL. That URL opens in a pop-up window and is able to
notify teams of success or failure. Your app can set its
session cookie so the user doesn’t need to sign in again.

It’s perhaps also valuable to understand the context under
which your tab is operating. Context contains valuable in-
formation such as team ID, channel ID, locale, theme, etc.
This context can be easily received in your Web application
by calling the microsoftTeams.getContext method. You can
also react to theme changes by using a theme handler.
This theme handler can be registered using the microsoft-
Teams.registerOnThemeChangeHandler method.

Bots
Next, let’s talk about bots. Bots are two-way conversa-
tions, except you’re talking to a computer program!
Really!

It isn’t as fancy as it sounds. You simply use the Microsoft
Bot Framework to author a bot and register it within your
team. Bots currently are supported in 1:1 chats (person-
al scope) or channel conversations (team scope). Group
chats don’t currently support bots. Bots appear like any
other user except they have a hexagonal avatar icon and
no mood message.

Creating a bot for a Microsoft Team takes four main steps:

1. Register the bot at https://dev.botframework.com/.
If you wish to have the bot surface up in Microsoft

Figure 4: The View team option.

Figure 3: Allowing sideloading of apps

Microsoft Teams: The Developer Story

21codemag.com

directly inside a team conversation. Imagine throwing
in a bug report as a chat item. Better yet, imagine be-
ing able to resolve the bug right within the context of
the team. Or being able to interact with a report. The
possibilities are endless. These extensions appear as
rich cards within the chat. In fact, when you’re typing
in the chat box, there are some extensions already there
at the bottom of the chat window, as can be seen in
Figure 6.

Adding a custom extension is a matter of authoring a
cloud-hosted service that listens to user requests and
responds with structured data, such as cards. You can
integrate the service with teams via the Bot Framework
activity objects. The process of adding an extension is
quite simple

Sending messages to the activity feed leverages the Bot
Framework. You can flag specific messages so they ap-
pear in the user’s activity feed as notifications. All you
have to do is mark your bot message with the following
snippet:

"channelData": {
 "notification": {
 "alert": true

Figure 5: Sideload a bot or tab

Figure 6: Existing extensions

 }
}

Note that both extensions and sending messages to the
user’s activity feed are currently in preview.

Summary
SharePoint, the original collaboration tool, is often mis-
taken as the only collaboration tool Microsoft offers, per-
haps because of its widespread use and success. But let’s
be honest, the dev story of SharePoint has always been
clunky. The platform itself is heavy and mired in decisions
taken in 2001 or before. I have no doubt that SharePoint
will continue to survive and improve, but improve it must.

Meanwhile, we have Microsoft Teams. It’s not a replace-
ment for SharePoint, but think of it like a persistent cha-
troom that’s secure, extensible, compelling, and cross-
platform. Extensible is where you, the developer, come
in. The possibilities are endless, and I hope to explore
them further in future articles.

Until then, be amazing and write some code!

 Sahil Malik

Microsoft Teams: The Developer Story

22 codemag.comLegal Notes: Should Software Developers Be Subject to Professional Standards of Ethical Conduct?

ONLINE QUICK ID 1711041

Legal Notes: Should Software
Developers Be Subject to Professional
Standards of Ethical Conduct?
Be careful what you ask for. The topic goes dormant for a while and then like clockwork, the drums bang again for the need
for software developers to be subject to professional standards. Often, the topic is presented in terms of craftsmanship
and engineering. Engineering is an interesting term because states license Professional Engineers (PEs). These are the

folks who sign off on blue prints for roads, bridges,
buildings, etc. PEs typically have an educational require-
ment from an accredited institution and must pass a rig-
orous examination. In addition, PEs must take a certain
number of continuing education credits on an annual or
bi-annual basis.

The same is true for the other licensed professions like
law, medicine, and accounting. In addition, members
of these professions, by the license they hold, are also
subject to the rules of professional responsibility that
govern a practice, whether it’s law, medicine, or ac-
counting. Further, such professionals are required to
carry malpractice insurance. Ask yourself now: How many
software developers would actually meet such standards,
assuming state licensure was required and a suitable
standards-making body existed? This article will delve
into the rationale for why this topic is continually raised
and the potential consequences if software developers
were to be subject to professional standards?

DISCLAIMER: This and all Legal Notes columns should
not be construed as specific legal advice. Although I’m a
lawyer, I’m not your lawyer. The column presented here is
for informational purposes only. Whenever you’re seek-
ing legal advice, your best course of action is to always
seek advice from an experienced attorney licensed in
your jurisdiction.

Why the Push for Professional
Standards?
My take is that the push is about getting respect and that
software development is a profession at the same level
as other recognized professions. The hard truth is that it
isn’t recognized as such today because anybody can open
a software development practice. There are no gener-
ally accepted professional standards. That doesn’t mean
the attempt hasn’t been made. A good example comes
from the ACM (The Association for Computing Machinery)
where they’ve published the Software Engineering Code
of Ethics and Professional Conduct: http://www.acm.
org/about/se-code. Other authors, such as Steve McCon-
nell and Bob Martin, have made attempts in their respec-
tive books Code Complete and The Clean Coder.

You Can Always Be Professional
Setting aside for a moment whether software develop-
ment is a profession and whether there should be licen-

sure and promulgated standards, don’t confuse being
in a profession with being professional. If you get paid
to write software, you’re a professional software devel-
oper. Note: That’s not a badge of quality or minimum
competence. If you get paid for something that could
otherwise be considered a hobby or pastime, you’re a
professional.

The question is, do you act and behave in a professional
manner? This is where codes of conduct and ethical con-
siderations come into play. Such codes, like the ones you
find at conferences, are an attempt to provide an objec-
tive standard of conduct. Put another way, these codes
are meant to be objective yardstick to judge behavior. If
you violate the code, you can be involuntarily removed
from a conference. Lawyers and doctors who violate their
codes, which are often referred to as rules of professional
conduct, can be sued for malpractice.

Think about that for a moment. What if you, a software
developer, could be sued for malpractice? Today, that’s
an impossibility because there are no objective standards
of conduct for software developers. I’ll get back to this
point in a moment.

The key take-away here is that regardless of the job you
hold, you can choose to be professional. That means
treating colleagues with respect; which doesn’t mean
you must always agree with them. Being professional
implies that you put the interests of your client and
your project before your own interest. At the same time,
that doesn’t mean you must see a project through,
regardless of the cost. Being professional doesn’t mean
you have make everyone your friend. It’s a deep con-
cept that often takes years to master and learn. Those
who get it early on tend to be the beneficiaries of good
mentorship. It’s a learned thing, not something you’re
born with.

Aren’t Certification Exams a Professional Designation?
No, certification exams are most certainly not a profes-
sional designation. The same goes for the Microsoft MVP
award. Certification exams are tests of minimum compe-
tency around a specific product and more specifically, a
specific product version. Although it’s true that vendor-
specific exams can lead to product certification like the
MCSD and MCSE (Microsoft Certified Solution Developer
and Engineer respectively), that’s not the same thing as
something like a CFA (Chartered Financial Analyst) or a

John V. Petersen
johnvpetersen@gmail.com
about.me/johnvpetersen
@johnvpetersen

John is a graduate of the
Rutgers University School of
Law in Camden, NJ and has
been admitted to the courts
of the Commonwealth of
Pennsylvania and the state of
New Jersey. John is a counsel
with the Law Offices of Daniel
M. Hanifin in West Chester, PA.
John’s latest video focuses
on open source licensing
for developers.
You can find the video here:
https://www.lynda.com/
Programming-Foundations-
tutorials/Foundations-
Programming-Open-Source-
Licensing/439414-2.html.

23codemag.com Legal Notes: Should Software Developers Be Subject to Professional Standards of Ethical Conduct?

ACM

For more information on
the Association for Computing
Machinery, consult their website
at acm.org. Organizations like
the ACM are a valuable resource
for professional development.
To join as a professional member,
you need to hold a Bachelor’s
degree or have at least two years
of employment in information
technology.

matters because without regulation, there can be no cog-
nizable and enforceable professional standards outside
of a private contract. If, as a software developer, in a
contract you sign you wish to be held to such standards,
you’re free to write those into the contact. Although your
client would likely be thrilled to have a clear yardstick
to measure contract performance, I don’t know why any
business-oriented rational-thinking software developer
would voluntarily sign up for additional liability. It’s im-
portant to separate the altruistic ideal of wanting to do a
good job from business and legal liability.

There’s also the practical aspect of whether software
development can be regulated. You’d need a recognized
standards-making body that would likely need some
standards for admittance such as experience, exams, etc.
The hard question you should ask is how many software
developers would be able to measure up.

It’s ironic that many software developers refer to them-
selves as software engineers. It’s ironic because engi-
neering is about applying mathematical and scientific
principles to problem solving. Most software written
today is more about trial and error than anything else.
If you want to hold yourself to a higher standard, be
professional and conduct yourself accordingly and be ac-
countable. At the end of the day, that’s what being a
professional is all about.

ChFC (Chartered Financial Consultant) that are earned in
the context of a regulated industry that requires licen-
sure.

Should Software Development
Be Regulated?
If you’re somebody who believes there should be profes-
sional standards and a code of ethics, whether you in-
tended it or not, your answer is that you think software
development should be regulated. It’s one thing for an
individual to adhere to a set of ethical guidelines. It’s
quite another to have those ethical guidelines mandated
to govern conduct.

Standards of professional conduct and ethics are the
kinds of things that can’t be disclaimed in a contract. For
example, in the legal profession, there’s Rule 1.8 – Con-
flict of Interest: Current Clients: Specific Rules. This rule
is concerned with making sure that the advice a client
receives is unbiased in favor of something that may ben-
efit the attorney or some other client of that attorney. In
the software development context, consider the advice
you give a client when they ask you if an app should be
completely rewritten. What if there’s a new technology
you want to learn? In this case, you could get paid to
learn a new technology. Is that in your client’s best in-
terest? The answer is that it depends on the specific facts
and circumstances. To what degree has your client given
informed consent? To what degree have you disclosed rel-
evant information that would facilitate your client giv-
ing informed consent? Regardless of what your contract
states, if you violated this rule, you could be sued for
malpractice because such a rule cannot be disclaimed in
a contract. This is what it really means to be held to stan-
dards of professional ethics and liability.

The ACM code of ethics previously referenced deals squarely
with conflicts of interest in Principle #4 – Judgment, and
specifically, rule #4.05: Disclose to all concerned par-
ties those conflicts of interest that cannot reasonably
be avoided or escaped. In addition to the ACM’s code
on software engineering, the ACM also has an overarch-
ing code of conduct: http://www.acm.org/about-acm/
acm-code-of-ethics-and-professional-conduct.

Conclusion
Should software developers be subject to professional
standards of ethical conduct? The answer to that ques-
tion is best answered with another question. Should
software development be regulated? The second question

Standards of professional
conduct and ethics are
the kinds of things that cannot
be disclaimed in a contract.
Regardless of what your
contract states, if you violate
a rule, you can be sued
for malpractice.

 John V. Petersen

24 codemag.comAn Introduction to Native Android and iOS Development with NativeScript

ONLINE QUICK ID 1711051

Nic Raboy
www.thepolyglotdeveloper.com
www.twitter.com/nraboy

Nic Raboy is an advocate
of modern Web and mobile
development technologies.
He has experience in Java,
JavaScript, Golang and a
variety of frameworks such
as Angular, NativeScript,
and Apache Cordova.
Nic writes about his development
experiences related to making
Web and mobile development
easier to understand.

An Introduction to Native Android and
iOS Development with NativeScript
NativeScript is an open-source mobile framework that makes it easier for developers to create stunning cross-platform
mobile applications that share a single set of code. How NativeScript does this and why it’s better over alternative mobile
frameworks is the subject of this article. Since the invention of the smart phone, there have been mobile applications and

a need for mobile application developers. Using a tech-
nology like Java or Objective-C, a developer could cre-
ate an application compatible with either Android or iOS.
These applications are fast and beautiful, but they aren’t
without penalty on the developer or development teams.

Common Pitfalls of Mobile
Application Development
A major pitfall in mobile application development is the
need to learn a different language for each mobile platform.

Take, for example, the following Android code written in Java
to make HTTP requests against some remote Web service:

RequestQueue queue =
 Volley.newRequestQueue(this);
String url ="https://thepolyglotdeveloper.com";

StringRequest stringRequest =
 new StringRequest(Request.Method.GET, url,
 new Response.Listener<String>() {
 @Override
 public void onResponse(String response) {
 System.out.println(response);
 }
 }, new Response.ErrorListener() {
 @Override
 public void onErrorResponse(
 VolleyError error
) {
 System.out.println("Request Failed!")
 }
 });
queue.add(stringRequest);

Much of the code in that snippet was taken from the An-
droid SDK documentation found at https://developer.
android.com/training/volley/simple.html.

To accomplish the same request within an iOS applica-
tion, the Objective-C code might look something like the
following:

NSURL *url =
 [NSURL URLWithString:
 @"https://thepolyglotdeveloper.com"];
NSURLRequest *request =
 [NSURLRequest requestWithURL:url];
[NSURLConnection sendAsynchronousRequest:request
 queue:[NSOperationQueue mainQueue]
 completionHandler:^(NSURLResponse *response,
 NSData *data, NSError *connectionError) {

 NSString *strData =
 [[NSString alloc]initWithData:data
 NSLog(@"%@", strData)
 }];

Much of the code above was taken from https://spring.
io/guides/gs/consuming-rest-ios/ to illustrate the de-
velopment differences between Android and iOS using
pure Java and Objective-C.

It’s feasible to learn both Java and Objective-C, two very
different development technologies. If you’re the man-
ager of a development team, it might be fiscally respon-
sible to staff developers for each technology.

The differences in platforms don’t end with Java and
Objective-C, but extend to how the user interface is de-
veloped using very different XML tags and attributes.

Mobile developers have been struggling with these plat-
form differences since the beginning, which spawned
ideas to find a better way to get the job done.

XML, CSS, and JavaScript or
TypeScript
The Web has had plenty of time to mature. It’s the norm
now for developers to possess skills in Web development
no matter their language expertise, so it’s not a leap to
needing those skills applied to mobile.

With NativeScript and similar frameworks, like Ionic
Framework and React Native, developers can take their
knowledge of Web development and apply it toward mo-
bile applications, all with a single codebase.

Looking back at the previous example for making HTTP
requests within iOS and Android applications, the follow-
ing accomplishes the same thing in NativeScript:

http.getJSON(
 "https://thepolyglotdeveloper.com"
).then(r => {
 console.dir(r);
}, e => {
 console.dir(e);
});

The above snippet was taken from the NativeScript Core
documentation found at https://docs.nativescript.org/
cookbook/http, but not only is it significantly smaller
than the Objective-C and Java equivalents, but it’s both
Android- and iOs-compatible.

25codemag.com An Introduction to Native Android and iOS Development with NativeScript

var mySnackbar = Snackbar.make(
 topmost().currentPage.android,
 "Hello World",
 Snackbar.LENGTH_SHORT
);
mySnackbar.show();

Accessing the native APIs through JavaScript and Type-
Script isn’t always the most convenient way to get the
job done. The Snackbar example didn’t take much to get
it working. Let’s look at a much more complex example
of native APIs, such as fingerprint authentication. This is
where plug-ins come into play.

NativeScript has many available third-party plug-ins
listed at http://plugins.nativescript.org that take the
hard work out of accessing native platform APIs. Take,
for example, the fingerprint authentication functionality
previously mentioned:

fingerprintAuth.
 verifyFingerprintWithCustomFallback({
 message: "Scan Finger",
 fallbackMessage: "Enter PIN"
}).then(() => {
 console.log("Authenticated");
}, error => {
 console.dir(error);
});

Through the fingerprint authentication plug-in, http://
plugins.nativescript.org/plugin/nativescript-f inger-
print-auth, what would have been lengthy Objective-C,
Java, or even JavaScript code, was significantly reduced
through the third-party library.

To be fair, Apache Cordova-based frameworks have access
to native platform APIs through the use of plug-ins. How-
ever, these APIs can only be accessed via a defined plug-
in, rather than anywhere that JavaScript or TypeScript is
supported, like what NativeScript offers.

How It’s Possible
NativeScript works by leveraging the V8 JavaScript en-
gine for Android and JavaScriptCore for iOS. V8, as per
the documentation found at https://developers.google.
com/v8/, implements EMCAScript, and likewise with Java
ScriptCore, as per the documentation found at http://
trac.webkit.org/wiki/JavaScriptCore.

This allows NativeScript for Android to have nearly iden-
tical support to that found in desktop Chrome and Nati-
veScript, and for iOS to have nearly the same support as
desktop Safari.

V8 and JavaScriptCore recognize Android and iOS because
the NativeScript runtime injects them. Both JavaScript
virtual machines have APIs that offer a lot of customiza-
tion to make this possible.

More information on how the V8 and JavaScriptCore vir-
tual machines come together to make NativeScript pos-
sible can be found in the NativeScript documentation
at http://developer.telerik.com/featured/nativescript-
works/.

NativeScript supports the development of cross-platform
mobile applications with JavaScript or TypeScript, a subset
of CSS, and an XML markup not too different from HTML.

The icing on the cake is in the framework support that’s
available with NativeScript. Although NativeScript Core is an
option, frameworks like Angular and Vue.js are also options.

Native APIs and Performance
without a Web View
NativeScript isn’t the only cross-platform mobile devel-
opment framework out there that works with common
Web technologies or even popular Web frameworks. For
example, Apache Cordova, Ionic Framework, and other
frameworks are also very popular.

So why choose NativeScript over the alternatives?

Apache Cordova-based frameworks render everything
within a WebView component, which is an embedded Web
browser, rather than mapping to individual native com-
ponents. The problem with WebView components is that
they have limitations and are known to behave differ-
ently on varying hardware and platform operating system
versions.

Performance is critical in today’s consumer facing mobile
applications, and so is functionality.

Not only do NativeScript applications render outside a
WebView, but native-platform APIs can be accessed di-
rectly from the JavaScript or TypeScript code.

Take, for instance, the following Java snippet for An-
droid:

import android.support.design.widget.Snackbar;
Snackbar mySnackbar = Snackbar.make(
 findViewById(R.id.myCoordinatorLayout),
 "Hello World!",
 Snackbar.LENGTH_SHORT
);
mySnackbar.show();

That code presents a Snackbar in the UI. The Snackbar,
like many Android APIs, isn’t conveniently wrapped and
ready to go in NativeScript. This doesn’t mean that you
can’t use the Snackbar API, it just means it hasn’t been
designed to be slick, using as little code as possible.

The next snippet presents a Snackbar in NativeScript.
Android and iOS classes are immediately available and
accessible via JavaScript and TypeScript in NativeScript
applications.

var Snackbar =
 android.support.design.widget.Snackbar;

The icing on the cake is in
the framework support that’s
available with NativeScript.

26 codemag.comAn Introduction to Native Android and iOS Development with NativeScript

Creating a New Project with the NativeScript CLI
To create a new NativeScript project using the CLI, ex-
ecute the following:

tns create bitcoin-project --template angular

A project called bitcoin-project is created. The angular
template specifies use of Angular and TypeScript in this
project. Another option is --template typescript, which
creates a NativeScript Core project that uses TypeScript.

The next examples use Angular with TypeScript.

Developing the Logic for the Application with TypeScript
This will be a single page application so all application
logic exists in a single TypeScript file. In particular, the
project’s app/app.component.ts file that was created
when creating the new project.

Open this file and you’ll see a very basic class:

import { Component } from "@angular/core";

@Component({
 selector: "ns-app",
 templateUrl: "app.component.html",
})
export class AppComponent {

}

Developing Your First Mobile App
with NativeScript
Background on NativeScript can only get you so far. Let’s
learn about NativeScript by trying it.

Let’s explore this by creating an application that dis-
plays the current currency conversion of Bitcoin to a
non-cryptocurrency alternative. It will consume data
from a remote Web service, something that would take
a considerable amount of work using Objective-C or
Java.

Installing NativeScript for Development
NativeScript, like many technologies lately, can be in-
stalled through the Node Package Manager (NPM). With
Node.js installed, execute the following bit of code to
install the NativeScript CLI through NPM:

npm install -g nativescript

This command installs NativeScript globally on your
computer. During the installation process, you may be
prompted to install the Android SDK. Depending on your
development goals, follow the prompts.

More information on installing the NativeScript CLI,
and preparing it for Android and iOS development, can
be found in the official NativeScript documentation at
https://docs.nativescript.org/start/quick-setup.

Figure 1: Converting currency app

27codemag.com An Introduction to Native Android and iOS Development with NativeScript

on the Coinbase API can be found at https://developers.
coinbase.com/docs/wallet/guides/price-data. Essential-
ly, a currency type can be passed to the API and its value
as compared to a single Bitcoin is returned.

To illustrate a request against Coinbase, a convert func-
tion can be created:

private convert(currency: string) {
 let url = "https://api.coinbase.com";
 url += "/v2/prices/spot?currency=";
 return this.http.get(url + currency)
 .map(result => result.json());
}

A currency type such as USD, EUR, etc. can be passed
and a GET request is made. The result of the request is
transformed using the map operator of RxJS and the ob-
servable is returned. The request isn’t executed until the
observable is subscribed to.

Jumping back to the ngOnInit method, it might have the
following TypeScript:

public ngOnInit() {
 let currencies =
 ["USD", "GBP", "EUR", "JPY", "MXN"];
 for(let key in currencies) {
 this.convert(currencies[key])
 .subscribe(result => {
 this.data.push(result.data);
 });
 }
}

When the application launches and the ngOnInit method
triggers, a loop cycles for every currency type in the local
currencies array. Each currency is sent via HTTP to the
Coinbase API and the result is appended to the public
data array that eventually binds to the user interface.

No other application logic is necessary to power this ap-
plication.

Designing a Beautiful User Interface with XML
With the page logic ready to go, the corresponding user
interface needs to be created. The user interface exists
in the project’s app/app.component.html file as defined
in the TypeScript file.

From a design perspective, it needs an action bar, some-
times referred to as a navigation bar. It also needs a list
of currencies and a Bitcoin value. To put emphasis on the
Bitcoin value, it takes up half the screen.

Open the project’s app/app.component.html file and in-
clude the action bar like this:

<ActionBar title="{N} CODE Magazine">
</ActionBar>

The page can be split into two sections by using a Grid-
Layout with evenly distributed rows and columns.

<GridLayout rows="*, *" columns="*">
</GridLayout>

This TypeScript file is connected to the project’s app/app.
component.html file, which holds the user interface for
this particular page.

You need a few more Angular services imported into this
page:

import {
 Component,
 OnInit
} from "@angular/core";
import { Http } from "@angular/http";
import "rxjs/Rx";

The OnInit interface gives access to the ngOnInit life-
cycle event that occurs after the constructor executes.
The HTTP service allows HTTP requests to be made against
remote Web services, and rxjs allows observables to be
used with the HTTP streams.

Because OnInit is an interface, the class needs to imple-
ment it:

export class AppComponent implements OnInit {

 public constructor() { } public ngOnInit() { }}

To prevent compile-time errors, the now implemented in-
terface needs the ngOnInit method to be present.

The constructor method is used for initializing variables
and services and the ngOnInit method is used for popu-
lating or loading variables using those services. It’s a
good idea to follow the best practices for using lifecycle
hooks, as outlined by the Angular documentation at
https://angular.io/guide/lifecycle-hooks.

When it comes to variables in the project, the following
two exist with appropriate scopes:

private http: Http;
public data: any;

The private Http variable is an instance of the imported
Http service. The public data variable holds any respons-
es received from the Http request. Only public variables
can be accessed from the HTML user interface.

Before Angular services can be used, they must be in-
jected into the constructor method:

public constructor(http: Http) {
 this.http = http;
 this.data = [];
}

To get information about Bitcoin and its currency con-
versions, the popular Coinbase API is used. Information

A currency type is passed to
the API and its value, compared
to a single Bitcoin, is returned.

28 codemag.comAn Introduction to Native Android and iOS Development with NativeScript

 row="0"
 col="0"
 class="h2">
</Label>
<Label
 text="{{ c.amount }}"
 row="0"
 col="1"
 class="footnote text-right">
</Label>

By using curly brackets, the content of the variable is
printed rather than the name of the variable.

Although the only page in the single-page application
is complete, the base template that came with the new
project needs to be altered. This is because the base tem-
plate came with a little more than what needed to be
used. It needs to be altered to prevent run-time errors.

Cleaning the NativeScript Project
The base Angular template for NativeScript ships with some
items components. These components have routes intend-
ed for navigation. Because this is a single page application,
neither the components or the routes are required.

Open the project’s app/app.routing.ts file and empty the
routes array:

const routes: Routes = [];

Remove any imports referencing files in the items direc-
tory.

Now open the project’s app/app.module.ts file and re-
move the importing of files in the items directory. Also
remove references to those files throughout the @Ng-
Module block.

Because an Angular service is used in the component that
was created, it needs to be imported globally into the
project. Within the project’s app/app.module.ts file, in-
clude the following:

import { NativeScriptHttpModule } from "nativescript-
angular/http";

The NativeScriptHttpModule needs to be included in the
imports array of the @NgModule block as well.

Running the Project in the iOS or Android Emulator
At this point, the project is ready to run. In fewer than 40
lines of TypeScript logic and fewer than 15 lines of XML,
a cross-platform iOS and Android application is born. To
accomplish the same in Objective-C or Java, significantly
more would have needed to be done.

To run the emulator, execute the next bit of code from
the NativeScript CLI:

tns run android --emulator

This command assumes that Android was properly con-
figured on the development computer. The android ar-
gument could easily be replaced with ios, provided that
Xcode is installed and configured.

The asterisk indicates that a stretch should be made.
There are two asterisks defined for rows, meaning that
there are two rows. These asterisk values could easily
be constant numeric or set to auto, which only takes as
much height as necessary.

More information on the GridLayout and layout contain-
ers in general can be found in the NativeScript docu-
mentation at https://docs.nativescript.org/ui/layout-
containers.

Inside the GridLayout, the first row is the Bitcoin value:

<Label
 text="1 BTC"
 row="0"
 col="0"
 verticalAlignment="middle"
 class="h1 text-center">
</Label>

The text to be displayed is constant and the position-
ing is constant, starting at the zero index. Various Native
Script classes are used to give the text a pleasant ap-
peal. More information on theming in NativeScript can be
found in the NativeScript documentation at https://docs.
nativescript.org/ui/theme.

The second row of the screen is a ListView with dynamic
data that comes from the Coinbase API:

<ListView
 [items]="data"
 row="1"
 col="0"
 class="list-group">
</ListView>

The items of the ListView are bound to the public data
variable found in the TypeScript file.

Each row in the ListView needs to be configured. Within
the ListView tags, the following lines of code exist:

<ng-template let-c="item">
</ng-template>

Each item in the data array will be represented as c. For
example, to access the Bitcoin amount, c.amount is used.

Within each row template, there needs to be another set
of columns. This means that there is another GridLayout,
this time within the ng-template tags:

<GridLayout
 rows="auto"
 columns="*, *"
 class="list-group-item">
</GridLayout>

The inner GridLayout has two columns and a row height
that only takes as much space as necessary. Each of the
two columns are dynamic data:

<Label
 text="{{ c.currency }}"

29codemag.com An Introduction to Native Android and iOS Development with NativeScript

<ActionItem
 text="Save"
 ios.position="right"
 (tap)="save()">
</ActionItem>
<ActionItem
 text="Load"
 ios.position="left"
 (tap)="load()">
</ActionItem>

Running the application yields the same results as the
previous live data only version, but this time the caching
logic and buttons are available. In this example, the data
is not automatically cached and loaded from a local copy.

Conclusion
Developing native mobile applications for Android and
iOS no longer has to be difficult or time consuming. With
NativeScript, it’s very easy to create visually stunning
applications with a fraction of the code and time spent
during development.

Taking the Application to the Next Level with Caching
Many applications that consume remote data need to ac-
count for situations where there’s no network connec-
tion. It’s often a good idea to cache data and display it if
fresh data can’t be obtained.

The Bitcoin conversion rates can easily be stored locally
and loaded at will.

To do this, within the project’s app/app.component.ts
file, import the following NativeScript class:

import * as ApplicationSettings
 from "application-settings";

The ApplicationSettings class allows key-value storage,
among other things. The focus here in this article is only
on key-value storage.

Within the AppComponent class, include the following
save method:

public save() {
 ApplicationSettings.setString(
 "data",
 JSON.stringify(this.data)
);
}

The complex data found in the data variable can’t be
stored in key-value storage, so it must first be serialized
into a string.

To load the data, a similar load method might exist:

public load() {
 this.data =
 JSON.parse(
 ApplicationSettings.getString(
 "data",
 "[]"
)
);
}

The data found in the data key is loaded. If nothing ex-
ists at that key, an empty array serialized as a string is
loaded. Because the data variable is meant to be com-
plex, the serialized data is parsed back into an object.

There are many ways to call these methods, but a com-
mon way is from a button in the application action bar.
Within the project’s app/app.component.html file, add
the following within the already existing ActionBar
tags:

In fewer than 40 lines
of TypeScript logic and fewer
than 15 lines of XML,
a cross-platform iOS and
Android application is born.

 Nic Raboy

SPONSORED SIDEBAR:

Time to Build a Mobile
App?

There’s no shortage of options
when it comes to languages
and platforms for building
mobile applications. Android,
iOS, or both? Native or hybrid?
Which language to choose:
Swift, Objective C, Java, C#,
JavaScript? Which framework
to choose: Xamarin,
NativeScript, ReactNative or
Cordova?

The experts at CODE
Consulting are here to help
you decide which option is
right for your mobile project.
Whether it’s a free hour-long
mentoring session, coding
help to meet an upcoming
deadline, or helping you
architect and code your
mobile app, the experts
at CODE Consulting can
help with all of your mobile
application needs. For more
information, visit www.
codemag.com/consulting
or email us at info@
codemag.com and ask about
scheduling a free hour-long
mentoring session or tell us
how our experienced CODE
Consultants can help you with
your mobile project today.

30 codemag.comSQL Server Reporting Services: Eight Power Tips

ONLINE QUICK ID 1711061

SQL Server Reporting Services:
Eight Power Tips
I’ll freely admit, I’m nearly addicted to SQL Server Reporting Services (SSRS). It’s not because SSRS is perfect: The product has
flaws and shortcomings, like any other product. I’m addicted because I can use SSRS to address many reporting requirements.
Although third-party products and self-service reporting tools offer glamorous features beyond what SSRS contains,

SSRS still provides many capabilities for reporting and
dashboarding functionality. I’m fortunate to have had
many opportunities to build reporting solutions and will
share some of those experiences. In this article, I’ll show
eight examples that will help you with various reporting
tasks.

You’ve Come a Long Way, SSRS
Twelve years ago, I performed a serious evaluation of
SSRS versus Crystal Reports, where the latter was the
market leader for reporting products. At the time, I
liked some of the features of SSRS, but concluded that it
wasn’t in the same league as Crystal Reports.

Then Microsoft released SSRS 2008 and I started to warm
up to SSRS, as did many other database developers. SSRS
2008 didn’t cover every bell and whistle that Crystal
Reports contained, but Microsoft enhanced the product
enough to make it the proverbial “bread and butter” re-
porting tool for database developers.

Over the years, I’ve written four CODE magazine articles
that covered SSRS features. Although some of these go
back many years, the tips and content still apply to re-
porting scenarios today. You can find these articles by
going to my main author page on the CODE Magazine site
(http://www.codemag.com/People/Bio/Kevin.Goff) and
searching on the page for SSRS.

Once again, I’ll going back to “old faithful” to show eight
SSRS tips that have helped me with various report needs.

What’s on the Menu?
This article covers a little more than half of a Baker’s
Dozen this time around, with the following SSRS tips:

1. Implementing a tab-style interface for navigation to
report page/sections

2. Cascading parameters
3. Some tips on Analytic Charts
4. Annotating parameters correctly
5. Scatter charts and drill-down features
6. Multiline tooltips
7. Determining which users have run reports
8. Enhancing document maps for group navigation

Tip #1: Implementing Tab-style Navigation to Report
Page/Sections
Almost all SSRS developers have built paginated reports
that span dozens or even hundreds of pages. SSRS al-
lows runtime browser navigation to specific pages, either
through navigation controls in the browser toolbar or
through document map links to specific groupings within
the report. In these cases, no one knows until runtime
whether the report will be 13 pages, or 33 pages, or more.

Sometimes developers create reports where they intend
to show a specific number of pages (usually a handful,
at most) as report sections. Figure 1 shows an example
where you might show one page that contains a matrix
and a chart for summary sales, a second page for chart
breakouts by product, and a third page for breakouts
by market. Note the three textboxes in the report page
header that serve as navigation controls for the user to
quickly access those pages.

Yes, you could simply tell the user to navigate to page
two or page three using the standard toolbar page navi-
gation controls. But simulating horizontal tabs for navi-
gation is one of many small visual effects that make the
output look nicer.

So how can you programmatically jump to a page in SSRS?
Some might think that SSRS bookmarks would do the
trick, but bookmarks are more for navigation based on
some filter/expression or field value. In this case, you’ve
created specific tables or charts in the report that force a
page break at the beginning of the object, and you want
the user to be able to quickly navigate to that section.
The only effective way is to relaunch the report with URL

Kevin S. Goff
kgoff@kevinsgoff.net
www.KevinSGoff.net
@KevinSGoff

Kevin S. Goff is a Microsoft SQL
Server/Data Platform MVP.
He’s a Database architect/
developer/speaker/author,
and has been writing for
CODE Magazine since 2004.
He’s a frequent speaker at
community events in the
Mid-Atlantic region and also
spoke regularly for the VS Live/
Live 360 Conference brand
from 2012 to 2015. He creates
custom webcasts on SQL/BI
topics on his website.

Figure 1: An SSRS report with horizontal tabs for page navigation

Simulating horizontal tabs
for navigation is one of many
small visual effects that make
the output appear nicer.

31codemag.com SQL Server Reporting Services: Eight Power Tips

syntax and programmatically set the Section parameter
with the page number. Figure 2 shows the SSRS action,
where you relaunch the report and fill in the SSRS report
command for the section number (rc:Section=2).

Note that the URL syntax in Figure 2 includes any values
for report parameters. In this case, if the user previously
selected “2016” for the report year, pass the current val-
ue back into the report when you relaunch it.

When the page reloads, you can also bold the textbox
“tab” corresponding to the current page number, by plac-
ing the following expression in the font bold property of
the textbox:

=iif(Globals.PageNumber=2,"Bold","Normal")

Tip #2: Cascading Parameters
Many years ago, my boss used to leave strongly worded
notes on my desk if my software showed drop-down entries
that were 100% irrelevant for a particular context. He felt,
and rightly so, that drop-down lists should only ever con-
tain relevant values. If a user selected a country, the list
of products should only include products with sales in that
country; otherwise, the list might contain hundreds of
products that weren’t relevant for the selection. Yes, there
are exceptions—sometimes seeing products without sales
might be analytically even more important than products
with sales. Still, most of the time you can help users by
filtering using just those items that are valid.

Consider Figure 3 through Figure 5, which represent a
parameter flow for a sales report. In Figure 3, the user
selects two countries. In Figure 4, the user filters the list
of years to only those with sales for France and Germany.
(Had I not filtered on years, you’d see several other years
in the list). In Figure 5, the user filtered the list of prod-
ucts to only those with sales in France and Germany in
2012 and 2013, AND only those products with the word
BLUE in the product description.

How do you accomplish this? Figure 6 shows the “in-
gredient list”: it’s three datasets and four parameters.
Here’s the sequence of events to follow:

1. Create the DataSet dsCountries, with a query that
reads the list of countries.

2. Create the Parameter prmCountries, and map the
available values of the Parameter to the dsCoun-
tries Dataset.

3. Create the DataSet dsYears, but only pull the years
that have sales for the countries that the user se-
lects in the prmCountries parameter (Listing 1).
This provides the “cascading” effect.

4. Create the Parameter prmYears, and map the avail-
able values of the Parameter to the dsYears Dataset.

5. Create the Parameter prmProductText as a free-
form text parameter (so that the user can enter
a text search to further filter the Product list).

Figure 2: Action to relaunch the same report, passing in user selections and the Section number

Figure 3: Data-driven drop-
down to select Countries

Figure 4: Data-driven drop-down to only show years with sales for selected countries

-- For larger tables, consider using flags in the master tables
-- for whether rows are in distribution
SELECT DISTINCT CalendarYear
FROM DimDate
WHERE EXISTS
 (SELECT 1 FROM FactResellerSales
 INNER JOIN DimReseller
 ON DimReseller.ResellerKey =

 FactResellerSales.ResellerKey
 INNER JOIN DimGeography
 ON DimGeography.GeographyKey =
 DimReseller.GeographyKey
 WHERE (DimDate.DateKey = FactResellerSales.OrderDateKey)
 AND (DimGeography.EnglishCountryRegionName IN
 (@prmCountries)))
ORDER BY CalendarYear

Listing 1: Query to retrieve filtered years based on Countries selected

Figure 5: Another drop-down with a filtered product list based on selected countries/years and based on search text

32 codemag.comSQL Server Reporting Services: Eight Power Tips

read these flags instead of large transactional tables to
filter parameter lists. The key takeaway is to implement
any filtering logic judiciously.

Those using SQL Server 2016 with access to the In-Mem-
ory Optimized Table feature might also want to consider
using In-Memory Tables as part of the strategy for cas-
cading parameter lookup tables. In-Memory Tables offer
potentially huge performance boosts, and we all know
that users want drop-down lists to populate as quickly
as possible!

Tip #3: Some Tips on Analytic Charts
When I was a kid, I’d sometimes ask my father if I could
do something that I didn’t realize was wrong. My father
would respond, “Son, you could do it, but it would be
wrong.” My corollary is this: Just because you CAN do
something, doesn’t mean you necessarily should. That is
the way I feel about many business charts. Yes, a picture
can be worth the proverbial thousand words, but only if
it’s the right picture. Take Figure 7 as an example. It’s a
column chart that shows monthly sales. There’s nothing
necessarily wrong with this approach, but truthfully, it’s
rather mundane and a grid of numbers for sales would
do just as well.

OK, let’s see if we can improve on this. The users are also
interested in the average selling price for the current se-
lection. Because the average monthly selling price is on
a lower scale than the monthly sales, you need to add a
sales price on a secondary Y axis (Figure 8).

Figure 8 is certainly an improvement, but you can still do
better. You also want to know the overall average price
for the year and show which months had an average price
above (or below) the overall average price for the year.
In Figure 9, I add an additional line to show the overall
average as a straight red line.

Although this isn’t required, it greatly assists the
user in narrowing the scope of the product list.

6. Create the Dataset dsProducts, but only for the
products that have sales for the countries/years that
the user selects in the two parameters, and also only
for products that contain the text in the prmPro-
ductText parameter (Listing 2).

Use cascading parameters with caution. Not all reports
need it. Also, if you’re not careful with query strategy,
the user might have to wait several seconds—or longer—
for SSRS to populate the filtered parameter lists. Still,
when you implement properly, this can help guide end
users through selections.

Important note: The two queries in Listings 1 and 2
read from the Microsoft AdventureWorks demo tables,
which aren’t that large. You wouldn’t want to perform
these types of queries against very large tables merely
to implement cascading parameters. Some environments
maintain flags on account and product master tables to
mark rows that have been in distribution (i.e., that have
sales). That way, any cascading query logic can quickly

-- For larger tables, consider using flags in the master tables
-- for whether rows are in distribution
SELECT ProductKey, EnglishProductName
FROM DimProduct
WHERE EXISTS
 (SELECT 1
 FROM FactResellerSales
 INNER JOIN DimDate
 ON FactResellerSales.OrderDateKey =
 DimDate.DateKey
 INNER JOIN DimReseller
 ON DimReseller.ResellerKey =
 FactResellerSales.ResellerKey

 INNER JOIN DimGeography
 ON DimGeography.GeographyKey =
 DimReseller.GeographyKey
 WHERE (DimProduct.ProductKey =
 FactResellerSales.ProductKey) AND
 (DimGeography.EnglishCountryRegionName IN
 (@prmCountries)) AND
 (DimDate.CalendarYear IN (@prmYears))) AND
 (EnglishProductName LIKE '%’ +
 @prmProductText + '%’)
ORDER BY EnglishProductName

Listing 2: Query to retrieve filtered products based on Country/Year selected, as well as optional text search

Figure 6: SSRS Datasets and
Parameters required for
the cascading exercise

If you’re not careful with
query strategy, the user might
have to wait longer for
SSRS to populate filtered
parameter lists.

Figure 7: An SSRS bar chart with monthly sales. Can we do better?

33Title articlecodemag.com

34 codemag.comSQL Server Reporting Services: Eight Power Tips

= sum(Fields!Reseller_Sales_Amount.Value,
 "dsData") /
 sum(Fields!Reseller_Order_Quantity.Value,
 "dsData")

The moral of the story is this: Don’t build SSRS charts
just for the sake of building charts. Every chart should
have some compelling message or takeaway.

Tip #4: Annotating Parameters Correctly
Some practices are so obvious that they almost don’t re-
quire repeating, but I’ll do it anyway. Always annotate
reports with the user selections. Regardless of whether
you show user selections such as Market/Product/Time-
frame in a report page heading or footer, always make
sure you show them. Imagine if your phone bill didn’t
show the date range of service or specific accounts or
other key information associated with the billing. That’s
how users can feel if you don’t annotate reports with the
selections they made!

Tip #5: Scatter Charts and Drill-down Features
One of my favorite chart types is a scatter chart. Re-
cently a company executive asked me to produce a visu-
alization that shows the distribution of price points by
customer. They had excess/aged inventory and wanted
to sell it to customers who had been paying the highest
sales price in specific markets for the same or similar
products.

Figure 11 is a bit generic, but still a good example of
showing the distribution of data. The example shows the
breakout of sales by city for each salesperson, with the
average unit price on the Y axis and the sales quantity on
the X axis. Figure 12 shows the chart data components.
Admittedly, sometimes I get a little confused about which
data element to place in which chart component, so it
always helps to keep an example nearby.

Note that Figure 11 also shows a multi-line tooltip. I’ll
cover that in the next tip.

Before I continue to the next tip, I’d like to point out a
three additional things you can do with scatter charts.

First, some people want to show a straight linear regres-
sion trend line to show the impact of the X-axis vari-
able on the Y-axis variable. Unlike Microsoft Excel, SSRS
doesn’t provide any built-in capability to plot a regres-
sion trend line. However, you can find many example SQL
queries on blogs/sites to calculate the necessary line
slope and plot that data as a straight line.

Second, advanced analysts might want to see the linear
correlation between the X-axis and Y-axis variables. Ana-
lysts and statistical experts refer to this as the Pearson
correlation coefficient, or PCC. In a perfect world where
X has a pure linear correlation with Y, the PCC has a value

Figure 10 shows the Chart Data section for the actual
chart in Figure 9. It plots the reseller sales as a bar chart
(note the tiny bar chart image to the left of the reseller
sales amount reference). You will also plot the average
price and overall average as line charts. SSRS permits you
to define a different chart type for each plotted value,
which allows you to create the overall chart in Figure
9. You can right-click on each specific value to set chart
options and configure whether to plot the value on the
primary or secondary Y-axis.

Finally, in the overall average value, you can set an
expression that (in this instance) calculates an overall
average for SSRS to spread as a straight red line. The ex-
pression sums the reseller sales across the entire dataset
and divides that value by the sum of the order quantity:

Figure 8: An SSRS monthly sales report with a dual-Y axis to show average sales price. Better, but…

Figure 9: A second horizontal line to show the weighted average over the year. Now we’re talking!

Figure 10: The Chart data for
the Sales, Average Monthly
Price, and expression for Overall
Average Price

Don’t build SSRS charts
just for the sake
of building charts!

35codemag.com SQL Server Reporting Services: Eight Power Tips

Reporting is Far More than
Building Report Layouts.

I’ve probably said this close to a
million times. Report strategies
need to consider data access,
parameter handling, security
(when applicable), rendering
to different output formats,
calculations, etc. The list goes
on and on.

Use tooltips as much as possible. Users appreciate mean-
ingful information in tooltips! Once, I had a manager
who left me screen shots of key on-screen calculations
that didn’t have an accompanying tooltip, with VERY an-
gry comments. Diplomatic? No. Was he right? Yes.

Tip #7: Determining Which Users Have Run Reports
Occasionally, I’ve needed to see which users have run re-
ports. Fortunately, SSRS provides an execution log in the
ReportServer database that you can query to see when
users have rendered reports.

Here are two SQL queries that you can use against the
SSRS Execution Log. The first query lists the reports de-
ployed on the current server along with the most recent
execution time and the total number of executions for
each report.

SELECT ItemPath AS ReportName,
 MAX(CAST(TimeStart AS DATE))
 AS MostRecentReportDate,
 COUNT(*) as NumExecutions
FROM Executionlog3
WHERE ItemAction = 'Render'
GROUP BY ItemPath
ORDER BY MostRecentReportDate DESC

of 1. If X has no linear correlation with Y, the PCC has a
value of zero. So overall, the PCC measures the strength
of linear dependence between the two variables. Again,
analysts use regression lines and PCC values to study the
impact of one event on another. In the same way that you
can find slope and regression line calculations on blogs
and websites, you can also find the logic for the Pearson
correlation coefficient.

Third, some people might want to see details associat-
ed with a single plotted point on a scatter graph. SSRS
makes this very easy through report actions. You can go
to the series properties for the data series and define an
action based on the data for the current plotted point
(i.e., current date, market, product, etc.).

Tip #6: Multiline Tooltips
Figure 11 in the previous tip shows a multiline tooltip.
In my opinion, one of the strongest features in SSRS is
how it exposes the current data for the plotted point,
making tasks like tooltip expressions and drill-down re-
port actions very easy. In the series data for the chart,
you can go to the tooltip property and generate a multi-
line tooltip (Figure 13). Note in the tooltip expression
that you use the VBCRLF constant to implement a line
break.

Figure 11: An SSRS scatter chart to show observation points (Employee sales by City)
Figure 12: the SSRS Chart data
options

I had a manager who left me
screen shots of key on-screen
calculations that didn’t have an
accompanying tooltip, with a
VERY angry note. Diplomatic?
No. Was he right? Yes.

Figure 13: An SSRS scatter chart to show observation points (Employee Sales by City)

36 codemag.comSQL Server Reporting Services: Eight Power Tips

Every Chart Should Provide
at Least One Meaningful
Analytic

You could build a column chart
that’s aesthetically pleasing-
and also no more valuable than
a regular tabular report.
A chart should show something
compelling, such as a spike
in price relative to an annual
average.

However, you can also annotate the document map with
additional information, such as the sales for each em-
ployee in the group, as well as the sales for the year for
that employee (Figure 14).

Implementing the document map expression is quite
easy. In Figure 15, I’ve pulled up the group properties
and set the expression. In this case, the expression con-
catenates the employee/salesperson with the sum of the
reseller sales amount. You can do the same thing for the
secondary group on employee plus year (in Figure 14)
with a similar expression for the year.

Final Thoughts:
I hope that you picked up at least one good tip in this
article that you can use in future reports. Although I’ve
largely retired from public speaking, I did roughly 250
community sessions on different .NET and SQL Server
topics over the last twelve years and at the end of each
session, I asked attendees to raise their hands if they
honestly felt they had learned at least one new feature
that would help them in some way in their jobs. That
has always been my goal. There are many speakers and
writers who are far better than I’ll ever be. My niche has
always been one of a storyteller. I’ve built many applica-
tions for many people and I love sharing how I handled a
task in the proverbial trenches.

I bid everyone a temporary adieu, as I don my Baker’s
cap and return the kitchen for ETL in Data Warehousing,
part deux!

The second query shows every user who’s run a specific
report (referenced in the WHERE clause), along with the
most recent execution time and the total number of ex-
ecutions for each user.

SELECT MAX(CAST(TimeStart AS DATE))
 AS MostRecentReportDate,
 COUNT(*) as NumExecutions ,
 UserName
 FROM [ExecutionLog3]
 WHERE
 itempath = '/SomeReport' and ItemAction = 'Render'
 GROUP BY UserName
 ORDER BY MostRecentReportDate DESC

I’ve created administrative-level reports using queries
like these in order to gather statistics on report usage.

Tip #8: Enhancing Document Maps for Group
Navigation
Most SSRS developers are aware of the Document Map
navigation capability, so that users can quickly jump to
the start of a specific group value. It’s common to see
document maps with a list of accounts, products, etc.

Figure 15: Document Map properties to set expression for custom Display

Figure 14: An SSRS report with a Document Map that contains the group names and dollar sales

Use Tooltips!

SSRS provides a decent model
for developers to show tooltips
with data from the context of
the output. Look at a chart or
complex calculation on a report
and put yourself in the position
of the user. What will help the
user understand what’s behind a
particular number?

 Kevin S. Goff

· Get thousands of cliparts free of charge!

· Get clipart in XAML Canvas and XAML Brush formats

· Use live tools to manipulate cliparts

· Styles, skins, templates, and shaders coming soon!

· SVG, JPG, PNG, BMP, GIF, and other formats
are also available!

Get oodles of free XAML clipart!

www.Xamalot.com

codemag.com38 Digging into Azure Functions: It’s Time to Take Them Seriously

ONLINE QUICK ID 1711071

Digging into Azure Functions:
It’s Time to Take Them Seriously
From large desktop applications to client-server applications, to the Web, to mobile, and now to AI, software has changed
from being centralized to being decentralized. In today’s computing landscape, we still have large pieces of software, but
smaller, independent components are increasingly common. You may remember batch jobs running as Windows services or

EXE applications running as scheduled jobs. Azure Func-
tions combine the best of the worlds of scheduled soft-
ware and Web services called by another system. Read on
to ramp up on:

• Understanding the progression to Azure Functions
• Choosing the right payment model
• Setting the proper Azure configuration
• Developing with triggers, inputs, and outputs

What Are Azure Functions?
Azure Functions are the next logical step in Platform as
a Service, or PaaS. Azure Functions provide the ability
to run discrete small units of code, or functions, in an
extremely flexible, scalable, and cost-effective manner.
Azure Functions offer the ultimate in infrastructure ab-
straction, removing any concerns about the underlying
servers or operating systems. Often dubbed a “Server-
less” technology, Functions allow for the quickest path
from idea to business value.

An Evolution
Cloud offerings exist to simplify or eliminate many in-
frastructure concerns and allow teams to focus on de-
livering value. Starting with virtual machines (VMs),
teams no longer need to be concerned about physical
servers. They can customize the environment and create
applications without thinking about what happens if a
hard drive crashes. When PaaS was introduced, prod-
ucts like Azure App Services removed another layer of
concern for developers. Developers no longer needed
to care about the operating system! Using PaaS, your
team can simply create an application and give it to
Azure for hosting. Functions are the next evolution of
PaaS.

Now, instead of needing to spin up an entire ASP.NET
MVC application with controllers, routes, configura-
tions, build scripts, and deploy scripts to test out an
idea, you can simply provision a new Function and go
from idea to deployed proof-of-concept in minutes.
With Functions, you can have a production-grade inte-
gration or API created and deployed in under 60 sec-
onds. Oh, and you haven’t paid any money yet, either.

Traditional cloud pricing models operate on reserving
resources and charging you for them even if they aren’t
being used. Functions completely change that by only
charging for the time they’re being used. A deployed
function incurs no runtime costs if nothing triggers it.
Teams can have, literally, hundreds of Functions de-
ployed in a live production environment, complete with
enterprise-grade logging, security, and scalability, and
without so much as a dime being billed against their ac-
count. On a side note, if you manage to have that many
functions in production, it’s probably time to reconsider
your architecture.

Be Viral Ready
One problem with using VMs and standard PaaS offer-
ings is the difficulty in using every hertz of the CPU or
kilobyte of RAM efficiently. You can’t provision just the
right amount of resources all the time because you need
to be ready for a spike. Sure, there are many ways of
mitigating unnatural load against your servers and APIs,
but those ways can be complicated and don’t offer any
more precision than simply adding another VM or App
Service Container.

Functions, however, are built to be scalable by default.
The runtime monitors the various ways that a Function
can be invoked (known aptly as triggers) and provisions
additional instances of the Functions automatically, as
needed. Once the load has lowered, the runtime then
deprovisions the additional instances. This means that
you never need to over provision for fear of not meeting
viral demands. Even if the load has tremendous peaks
and very low valleys, the Functions runtime expands
and contracts automatically to continue to serve re-
quests.

Consumption Plan
Azure provides two hosting models for Functions. The
first is called the Consumption Plan. This is the canonical
way of using Functions. The Consumption Plan offers the
elastic scalability and pay-per-use model that Functions
are known for. However, it does come with a few caveats:

• Functions running on a Consumption Plan have a
timeout of five minutes. Should the function run
longer than five minutes, the runtime may abruptly
kill the Function and any data not persisted will
be lost. It’s possible to extend the timeout to 10
minutes, but the timeout is set to five minutes by
default

• Memory usage is limited to 1.5 GB. Remember, this
is also shared among all the Functions within the
Function App.

Justin Self
justinself@outlook.com
www.justinself.com
@thejustinself

Justin Self works at Tethr,
building a voice analytics plat-
form that lets businesses hear
what their customers are saying.
He speaks at user groups and
conferences, and leads
the Azure Austin user group.

Jeffrey Palermo
jeffrey@clear-measure.com
JeffreyPalermo.com
@JeffreyPalermo

Jeffrey Palermo is the CEO of Clear
Measure, a software engineering
firm for mid-market non-technolo-
gy companies. A Microsoft MVP for
11 consecutive years, Jeffrey has
spoken at national conferences
such as Tech Ed, VS Live, DevTeach,
and Ignite. He founded and ran
several software user groups and
is the author of several books and
articles. He’s a graduate of Texas
A&M University and the Jack Welch
Management Institute, an Eagle
Scout, and an Iraq war veteran.

Azure Functions combine
the best worlds of scheduled
software and Web services.

codemag.com 39Digging into Azure Functions: It’s Time to Take Them Seriously

• Scaling is handled automatically and transparently
based on the back pressure of triggers; the unit of
scale is the Function App. When a Function App is
scaled, an additional instance was provisioned.
How and when the runtime scales in Function Apps
is heuristic by nature. For example, if a Function is
triggered by a new message in an Azure Service Bus
Queue, the runtime monitors the depth of the queue
and the age of the oldest message to determine if
additional instances should be provisioned. There
are unique scaling heuristics for each trigger type.

• Functions “turn off” after idling for a period of time
and can incur a startup cost in terms of perfor-
mance. This performance penalty can be mitigated
(more on that below).

The pricing model for the Consumption Plan is completely
based on use, not provisioning. The cost of a Function is
a combination of a GB-s (a unit of resource consumption)
and the number of executions.

The formula for calculating GB-s is as follows: GB-s =
(number of executions) x (execution duration in sec-
onds) x (amount of RAM used in GB).

Once the GB-s has been calculated, the cost becomes
$0.000016 per GB-s + $0.20 per million executions. Ta-
ble-1 illustrates an example of a Function executed two
million times, taking 500 milliseconds each time and us-
ing 512 MB of RAM. Execution times are rounded up to
the nearest 100 milliseconds and RAM is rounded to the
nearest 128 MB. That means that the minimum amount
of resources a Function can use is 100 millisecond execu-
tions and 128 MB of RAM.

Azure does offer a monthly grant of 400,000 GB-s and 1
million executions. So, if the Function operates within
those constraints, no charge is made for running it.

App Service Plan
The other hosting model is the App Service Plan. With
the App Service Plan, you select the configuration of a VM
to be provisioned. It’s the same plan that’s used for other
PaaS offerings, like Azure Web Apps. The number of cores
and amount of RAM is static within the configuration,
obviously, so choosing the correct configuration should
be thoughtful as the price is directly affected. Here are
the main differences between the Consumption Plan and
App Service Plan:

The pricing model for
the Consumption Plan
is completely based on use,
not provisioning.

The minimum amount of
resources a Function can use
is 100 millisecond executions
and 128 MB of RAM.

Monthly Production Values
Average Memory Consumption 512 MB

Function Execution Duration .5 Second

Number of Executions 2,000,000

Calculating Resource Consumption (Time)
Executions 2,000,000

Multiplied by Execution Duration X .5 seconds

Resource Consumption (seconds) 1,000,000

Calculating Resource Consumption (Memory)
Average Memory Used (in GB) 512 MB / 1024 MB = .5 GB

Multiplied by Consumption Seconds X 1,000,000

Total Resource Consumption (GB-s) 500,000 GB-s

Minus Monthly Free Grant - 400,000 GB-s

Billable Resource Consumption 100,000 GB-s

Billable Resource Consumption 100,000 GB-s

Multiplied by Cost/GB-s $0.000016

Resource Consumption Cost $1.60

Cost of Executions
Total Executions 2 million

Minus Monthly Free Grant - 1 million

Billable Executions 1 million

Billable Executions 1 million

Multiplied by $.20 per Million Executions X $.20

Total Cost of Executions $0.20

Total Cost of Function
Resource Consumption Cost $1.60

Plus Execution Cost + $0.20

Total Cost $1.80

Table 1: An Example of Calculating Costs for a Function

Table 2: Trigger and Input/Output Bindings Options

Service Trigger Input Output
Azure Schedule X

HTTP (REST or webhook) X X

Azure Blob Storage X X X

Event from Azure Event Hubs/Grid X X

Azure Storage Queues X X

Azure Service Bus Queues and Topics X X

Azure Event Grid X

External Files * X X X

Azure Storage Tables X X

Azure Mobile Apps SQL Tables X X

Azure Cosmos DB Documents X X

Azure Push Notifications X

Twilio SMS Text X

SendGrid Email X

Bot Framework ** X

* External File triggers and input and output bindings are currently in preview and integrate with
File Storage, DropBox, Box, OneDrive, OneDrive for Business, File System, FTP, and SFTP

**Bot Framework output is currently in preview

codemag.comDigging into Azure Functions: It’s Time to Take Them Seriously

• The memory use of a Function within an App Ser-
vice Plan is limited to the configuration of the VM.
In other words, your limit can be much higher.

• There’s no execution time limit. Because the CPU
cores are provisioned for your VM, your Function
may run for as long as it needs to.

• With the App Service Plan, a dedicated VM is provi-
sioned, meaning you are charged for those resourc-
es even if they aren’t being fully used.

• Scaling beyond the bounds of the VM is not handled
by the Functions App runtime and, instead, must be
configured manually.

Figure 2: Creating a new Function Using a Quick Template

Figure 1: Creating a new Function App in the Azure Portal

SPONSORED SIDEBAR:

The Dreaded Azure 3 Cs

Confusion, Complication,
and Complexity. No doubt
about it, Microsoft Azure
is a robust and full-featured
cloud platform but with
that robustness often come
the dreaded 3 Cs.
CODE Consulting can help
you navigate your way
through the 3 Cs and partner
with you to develop Web,
mobile, IoT, SaaS, machine
learning (AI) and data
analytics solutions on
the Microsoft Azure platform.
CODE Consulting is your
consulting and development
partner with the experience
and expertise you need.
For more information
visit www.codemag.com/
consulting or email us at
info@codemag.com and
ask about scheduling a free
hour-long mentoring session.

40

codemag.com Digging into Azure Functions: It’s Time to Take Them Seriously

The Hello World of Functions
To create a Function, log into the Azure portal. Click New
on the top left, click Compute, then select Function App
(a Function App is a container for Functions).

Figure 1 shows the basic configurations you need to
make.

1. Give the Function App a globally unique name. It
needs to be globally unique because these can be
triggered via HTTP requests. Notice the .azureweb-
sites.net that appears underneath the App Name
input box at the top of the far right column.

2. Select the appropriate subscription.
3. Use an existing Resource Group or create a new

one.
4. Choose the right hosting plan for the Function App:

either Consumption or App Service Plan.
5. Select the correct region. As always, keep your

resources close together to reduce latency. Calls
within the same datacenter experience a latency of
around 1-2 milliseconds in overhead. Going from
East to West regions, for example, can incur more
than 50 milliseconds overheard.

6. Choose your storage account.

Once the Function App is created, clicking the plus (+)
button next to Functions gives an option for quickly
creating a new Function using either Webhook or API,
and Timer or Data processing triggers. This is shown in
Figure 2. These premade Functions, used for getting
started quickly, come in C#, F# and JavaScript, but you
can create custom Functions using any of the following
languages: Bash, Batch, C#, F#, JavaScript, PHP, Power-
Shell, Python, and TypeScript.

• Functions can be “always on.” In App Service Plans,
you may configure a Function to be always on,
thereby eliminating the idle time, shut off, and ac-
companying performance penalty that may happen
in the Consumption Plan.

Which One to Pick?
The Consumption Plan should be the default choice. How-
ever, choose the App Service Plan if:

• You already have an underused App Service Plan
that can support your Function app.

• Your Functions consume more than 1.5 GB of mem-
ory.

• Your Functions need to run actively for more than
10 minutes.

• The startup performance penalty needs to be elimi-
nated.

• You need to configure Network options for security
or access to secured resource (like VNET integration
or IP whitelisting).

Triggers, Inputs, and Outputs
All Functions are triggered by some event. It may be a
message being added to an Azure Storage Queue, or a
new Blob created in Azure Blob Storage. Triggers can also
be HTTP requests (either REST or webhooks).

In addition to triggers, Functions can have data bindings
for inputting and outputting data. These bindings serve
as an easy way to access different resources. The bind-
ings handle connecting to their respective resources and
manage the credentials for you. Table 2 lists the various
triggers and the input and output bindings. This list will
change as Azure adds capabilities.

Figure 3: Using the Online Editor

41

codemag.comDigging into Azure Functions: It’s Time to Take Them Seriously

trigger and is ready to be invoked. Near the top right,
there’s a link for grabbing the URL of the Function. On
the right lies a built-in mechanism for testing and the
bottom shows the live logs. Expanding both of those sec-
tions, as shown in Figure 4, completes the lightweight
development environment in the portal.

The Online Editor
Once the Function is created, you’re presented with the
online editor; see Figure 3 for a quick look. Here, you can
write C# (or the language you chose to write the Func-
tion in) to create APIs, process events, handle incoming
data, etc. The function shown in Figure 3 uses an HTTP

Figure 5: Using the Online Editor with Test and Logging expanded

Figure 4: Using the Online Editor with Test and Logging expanded

42

codemag.com Digging into Azure Functions: It’s Time to Take Them Seriously

parts of Azure in order to develop your own code that
can run in this environment. Now that you know what
Functions are, you can explore where they can be used
in your production scenarios. With Functions excelling in
handling unpredictable loads, scaling to meet massive
demand, and extending system architecture via events,
you can use them in a number of scenarios. Whether
you are refactoring a monolithic system into a series of
smaller, “right sized” services, or quickly creating proofs
of concept, Functions help your teams deliver value for
their customers.

With the Test and Log sections, you’ll find a sample body
for the HTTP request that comes with the templated Func-
tion.

The sample input defaults to setting the name param-
eter to Azure. Here, you can add any parameters that are
needed to test the logic in your Function. Clicking Run
executes the Function with the test data you’ve specified.
The output is displayed in the bottom right corner and
the Logs section shows the successful execution of your
new Function.

And that’s it. That’s the Hello World for Functions. How-
ever, that’s just the start of Functions. Going back to the
Function App blade that was created, there’s a tab on top
called Platform Features. See Figure 5.

On the Platform Features tab, the rest of the Functions
configuration story comes on the scene. Here, you can
easily manage app settings and wire up deployments
from a slew of providers, including the most popular Git
hosting services. You can integrate your App Insights in-
stance with your Functions. You are using App Insights,
right?

Other features include setting CORS policies, forcing
OAuth2 integrations, custom domains, and SSL certifi-
cates. Also, if your Function App uses the App Service
Hosting Plan, you can configure VNET integration and
whitelisting, among other network configurations.

Local Development
Using the latest Visual Studio 2017 updates (as of this
writing, the current version is 15.3.3), you can create
Functions locally and even use the local runtime to host
and test your Functions. To develop locally, simply cre-
ate a new project using the Azure Function App project
template and add a new Azure Function. The templated
file using HTTP triggers is the same as the one online.
Pressing F5 from there gives you a console app that loads
a small Functions hosting environment; Figure 6 shows
this.

With the local development story complete, you can con-
tinue with all the best practices, including implementing
a full, end-to-end, Continuous Delivery Pipeline complete
with automated testing and deployments.

Conclusion
In this article, you’ve read an overview of Azure Func-
tions. You’ve explored the pricing models available, and
the methods by which they can be integrated into a pro-
duction environment with triggers, inputs, and outputs.
And you’ve followed along, configuring the necessary

Figure 6: The Local Function Host Runtime Console

With Visual Studio 2017 15.3.3,
you can create Functions
locally and even use the local
runtime to host and test your
Functions.

 Justin Self

 Jeffrey Palermo

43

44 codemag.comDeveloping Cross-Platform Native Apps with a Functional Scripting Language

ONLINE QUICK ID 1711081

Developing Cross-Platform Native Apps
with a Functional Scripting Language
In the July/August 2016 issue of CODE Magazine, I published an article on how to create your own scripting language
and implement it in C#. I called this language CSCS: Customized Scripting in C#. But I didn’t mention any practical usage of
such a scripting language at the time, even though there were some unexpected applications of it, e.g., in game hacking.

Since then, Xamarin was acquired by Microsoft and at
first Xamarin Studio Community Edition, and later Visual
Studio 2017 Community Edition which contained Xama-
rin, were released for Windows and macOS. Now individu-
al developers and even small companies can develop iOS
and Android apps in C# using Xamarin for free (in addi-
tion to the Windows Phone apps that they were already
able to develop in C#).

There’s a choice of using either Xamarin.Forms (in case
users don’t require platform-specific functionality and
are comfortable with using XAML) or platform-specific
Xamarin.iOS and Xamarin.Android to write apps with any
features that they can get as if they were using iOS Swift/
Objective-C or Android Java development.

The first step of shortening time-to-market if you de-
velop cross-platform apps, is to use Xamarin. And this
is where I saw the next step and an application for the
CSCS scripting language: I can extend the CSCS scripting
language for mobile development, so creating and plac-
ing different widgets will be just one-liners. The scripting
language doesn’t have to be used exclusively but can be
combined with the C# code.

The most time-consuming part, at least for me, has always
been the layout, which is implemented differently on iOS
and Android. For Android you usually use XML, and for iOS,
there’s Auto Layout, a constraint-based layout system.
Both systems permit having conflicts—definitions conflict-
ing with each other—that are solved at runtime (not al-
ways obviously and depending on the screen size).

The advantages of using customized scripting in C# for
mobile development are:

• The same code is used to create and place a widget
on both iOS and Android. Windows Phone can be
added easily as well.

• A simpler layout system works exactly the same for
Android and iOS and there’s no possibility of con-
flicts.

• You can call the native C# code from inside a CSCS
script. You can avoid delays due to marshalling by

pre-compilation. You’ll see how to do this in this
article.

• The end-result is still a native app.
• Debugging time is quicker with CSCS than with C#.

When making some modifications in the script,
there’s no recompilation of the source code. The
changes in the XML/Storyboard aren’t necessary any-
more for changing the layout (and it does take some
time recompiling the layout changes unless you really
have a “crème de la crème” development computer).

• Because of the proximity of CSCS to the C# code,
you can easily modify the existing CSCS functional-
ity or add a new function. For example, it’s very
easy to add a new widget, and you’ll see some ex-
amples in this article.

• The differences from Xamarin.Forms are that you
don’t need to know XAML, and there fewer lines of
code. You can also use platform-specific features
more easily.

• People with little or no programming experience
can easily create the UI using CSCS scripting.

All of the code in this article is available for free at
https://github.com/vassilych/mobile. It’s also associ-
ated with this article on the CODE Magazine website.

To use CSCS for mobile development, you need to down-
load any version of Visual Studio 2017 and enable the
Xamarin option there. Then you can use my sample proj-
ect at https://github.com/vassilych/mobile or the CODE
Magazine website, which contains the CSCS compiler in
the shared C# code section, and play around with the
script file script.cscs there.

A “Hello, World!” in CSCS
Let’s start with our “Hello, World!” program for mobile
development. Check out the CSCS script in Listing 1.

The result of executing this script is shown in Figure 1.

Figure 2 shows fragments of the screen on iPhone and
Android after typing “Hi there” in the text field and click-
ing on the “Change me” button.

As you can see, I added a background and three tabs on
the fly. In addition, I added the following widgets: a La-
bel (UILabel in iOS and TextView in Android), a Button
(UIButton in iOS and Button in Android), and a TextEdit
(UITextField in iOS and EditText in Android).

Let’s briefly examine the contents of the “Hello, World!”
script in Listing 1.

Vassili Kaplan
vassilik@gmail.com
www.iLanguage.ch

Vassili Kaplan is a former
Microsoft Lync developer.
He’s been writing software
since the early nineties,
studying and working in a
few countries, such as Russia,
Mexico, the USA,
and Switzerland.

He has a Masters in Applied
Mathematics with Specialization
in Computational Sciences
from Purdue University,
West Lafayette, Indiana.

In his spare time, he works
on the CSCS scripting language
and migrates his free iPhone
and Android app iLanguage
to CSCS. His other hobbies are
traveling, biking, badminton,
and enjoying a glass of a good
red wine.

I want to be buried with
a mobile phone,
just in case I’m not dead.

Amanda Holden

45codemag.com Developing Cross-Platform Native Apps with a Functional Scripting Language

horizontal and vertical placement. It won’t have the wid-
get’s size: That’s provided later, when you add the widget
itself. The reason is that potentially the same location
can be used by various widgets of differing sizes (for ex-
ample, one of them can be hidden, and another can be
shown, depending on some other runtime conditions).

Also, the location will have an optional parameter of the
view (or layout, in the case of Android) for where to place
the widget. If the location isn’t provided, the widget is

The AddTab function creates a tab application on the fly and
adds the first tab to the app. Its signature is the following:

AddTab(TabName, ActiveIcon, <InactiveIcon>);

The ActiveIcon is used when the tab is selected, and the
InactiveIcon is used otherwise. The InactiveIcon is op-
tional: if it’s not provided, the ActiveIcon is used.

SetBackground(image) is used to set the background of
the app. Note that before using this function, the image
file must be first added to the Resources folder of the
Xamarin.Android and Xamarin.iOS projects. See the ac-
companying source code download for details.

The next section explains how you add different widgets
to the app.

Layout
In order to add a widget, you need to define the applica-
tion layout. In this section, you’re going to see how the
layout is organized in CSCS. There’s no familiar drag-and-
drop functionality but in exchange, there’s more control
about where you want your widget placed.

Layout in CSCS
For the layout definition, I used a mixture of the iOS and
Android approaches. From iOS and the Auto Layout, I ap-
plied a rather obvious concept: For the unique widget
location, I need to define the relative widget placement
horizontally and vertically, and also the widget size.
That’s it! I’m not sure why this can be defined multiple
times, and inconsistently, in both iOS and Android, lead-
ing to conflicts; these conflicts may be resolved with un-
expected results at runtime.

For the implementation, I took an approach similar to
the concept of the RelativeLayout in Android, but it’s not
possible in CSCS to have multiple definitions for a widget
(because they may contradict each other). For instance,
in Android, you can apply the method ApplyRule() an un-
limited number of times when placing a widget.

To create a new widget, first you need to create its loca-
tion. The location has the information about the widget’s

Figure1: Running the “Hello, World!” script on iPhone and Android

function changeme_click(sender, arg) {
 SetText(sender, GetText(textChangeme));
 SetText(versionLabel, _VERSION_ + «. Size: « +
 DisplayWidth + «x» + DisplayHeight);
}

AddTab("Learn", "learn.png", "learn2.png");
SetBackground("ch_bg.png");

locLeft = GetLocation("ROOT", "LEFT", "ROOT", "CENTER", 20, 0);
AddButton(locLeft, "buttonChangeme", "Change me", 260, 80);
AddAction(buttonChangeme, "changeme_click");
SetFontSize(buttonChangeme, 12);

if (_IOS_) {
 hint = «Hello, iPhone user»
} elif (_ANDROID_) {
 hint = «Hello, Android user»

} else {
 hint = «Hello, Windows user»
}

locLeftRight = GetLocation(buttonChangeme, "RIGHT",
 buttonChangeme, "CENTER", 40, 0);
AddTextEdit(locLeftRight, "textChangeme", hint, 260, 60);
SetFontSize(textChangeme, 12);

locAbove = GetLocation(buttonChangeme, "ALIGN_LEFT",
 buttonChangeme, "TOP");
AddLabel(locAbove, "versionLabel", "", 360, 60);

AddTab("Quiz", "test.png", "test2.png");
AddTab("Settings", "settings.png", "settings2.png");

SelectTab(0);

Listing 1: A “Hello, world!” program in the CSCS scripting language

Figure 2: After clicking on the “Change me” button

46 codemag.comDeveloping Cross-Platform Native Apps with a Functional Scripting Language

zontal margin of -20 means moving the widget left 20
pixels; a vertical margin of 30 means moving the widget
down 30 pixels. This is similar to the TranslationX and
TranslationY parameters in Android.

Let’s see, for example:

locLeft = GetLocation("ROOT", "LEFT",
 "ROOT", "CENTER", 20, 0);

The first argument, “ROOT”, refers to the reference widget,
which is the main window, and the second argument speci-
fies the horizontal placement; in other words, the widget
will be placed horizontally on the left. The third and fourth
argument specify the vertical placement at the vertical
center of the screen. The fifth parameter, 20, indicates
that the widget should be moved 20 pixels to the right.

Let’s see another example:

locAbove = GetLocation(buttonChangeme,
 "ALIGN_LEFT",
 buttonChangeme, "TOP");

This horizontally aligns the left corner of buttonChangeme
with the left corner of the new widget. Vertically, it places
the new widget on top of the buttonChangeme.

After creating a location, you must use it to create a wid-
get:

w = 220;
h = 78;
margin = 10;
fontSize = 14;

AddTab("Learn", "learn.png", "learn2.png");
AddTab("Quiz", "test.png", "test2.png");

locCenter = GetLocation("ROOT", "CENTER", "ROOT", "CENTER");
AddButton(locCenter, "buttonCenter", "", 200, 200);
SetImage(buttonCenter, "angry.png");

locTrans = GetLocation("ROOT", "CENTER", "buttonCenter", "BOTTOM",
 0, margin);
AddButton(locTrans, "buttonTrans", "Translate", 200, 80);
AddBorder(buttonTrans, 0, 0);

AddLabel(locTrans, "labelTrans", "", 240, 80);
AlignText(labelTrans, "center");

locCenterLT = GetLocation(buttonCenter, "ALIGN_LEFT", buttonCenter,
 «TOP», 0, -1 * margin);
AddButton(locCenterLT, "buttonCenterLT", "lt", 85, 85);

locCenterRT = GetLocation(buttonCenter, "ALIGN_RIGHT",
 buttonCenterLT, «TOP», 0, margin);
AddButton(locCenterRT, "buttonCenterRT", "rt", 85, 85);

locCenterRT2 = GetLocation(buttonCenterRT, "RIGHT", buttonCenterRT,
 «CENTER», 2, 0);
AddButton(locCenterRT2, "buttonCenterRT2", "rt2", 120, 120);

locCenterRT3 = GetLocation(buttonCenterRT2, "CENTER",
 buttonCenterRT2, «TOP», 0, -5);
AddButton(locCenterRT3, "buttonCenterRT3", "r", 68, 68);

locCenterTL = GetLocation(buttonCenter, "LEFT", buttonCenter,
 «ALIGN_TOP», -1 * margin, 0);
AddButton(locCenterTL, "buttonCenterTL", "tl", 85, 85);

locCenterBR = GetLocation(buttonCenter, "RIGHT", buttonCenter,
 «ALIGN_BOTTOM», margin, 0);
AddButton(locCenterBR, "buttonCenterBR", "br", 85, 85);

loc1 = GetLocation("ROOT", "LEFT", "ROOT", "BOTTOM");
AddButton(loc1, "button1", "Left", w, h);
SetFontSize(button1, fontSize);

loc2 = GetLocation("button1", "RIGHT", "ROOT", "BOTTOM");
AddButton(loc2, "button2", "Right", w, h);
SetFontSize(button2, fontSize);

loc3 = GetLocation("button2", "RIGHT", "button2", "TOP");
AddButton(loc3, "button3", "RelRight", w, h);
SetFontSize(button3, fontSize);

loc4 = GetLocation("ROOT", "CENTER", "ROOT", "TOP");
AddButton(loc4, "button4", "TopCenter", w, h);
SetFontSize(button4, fontSize);

loc5 = GetLocation("button4", "LEFT", "ROOT", "TOP");
AddButton(loc5, "button5", "TopLeftCenter", w + 10, h);
SetFontSize(button5, fontSize);

loc6 = GetLocation("button4", "RIGHT", "button5", "BOTTOM",
 -1.5 * w, 0);
AddButton(loc6, "button6", "BelowRight", w, h);
SetFontSize(button6, fontSize);

AddTab("Settings", "settings.png", "settings2.png");

Listing 2: Examples of different layouts in CSCS

placed in the root view (or in the root Android layout,
which happens to be a RelativeLayout).

To create a widget location, the syntax is the following:

Location = GetLocation(horizontalReference,
 horizontalRelation,
 verticalReference,
 verticalRelation,
 <additionalHorizontalMargin>,
 <additionalVerticalMargin>,
 <View>);

The horizontal and vertical references are either other wid-
gets (or views) or the root window (in this case, it’s denot-
ed by the “ROOT” string). Most of the horizontal and ver-
tical relation parameters are borrowed from the Android
RelativeLayout.LayoutParams class. One of the differences
is the Center parameter, which is only used for placement
inside of the parent in Android, but you use it depending
on the context: If the reference widget isn’t the root, the
new widget is centered relative to the reference widget.
You’ll see a few examples of placing widgets in different
places on the screen and relative to each other later on.

The additional horizontal and vertical margins are, by
default, zero. In case they’re provided, they indicate the
additional margin for moving the widget horizontally
(the direction goes from left to right) and vertically (the
direction goes from top to bottom). For example, a hori-

47codemag.com Developing Cross-Platform Native Apps with a Functional Scripting Language

Implementation of the Layout in C#
Now let’s see the implementation of the layout in the C#
code so you can easily modify it to better fit your needs.

First, I’ll do a very quick elevator pitch of how CSCS script-
ing language works and how you can add new functions
to it. For a longer and a much more detailed explanation,
take a look at the article that I published in the July-Au-
gust 2016 issue of CODE Magazine (http://www.codemag.
com/article/1607081).

The CSCS language is based on the Split-and-Merge al-
gorithm, and is implemented in C#. At first, you collect
a series of tokens and then merge them one by one.
As soon as you encounter an expression in parentheses
or a function, you apply the whole Split-and-Merge algo-
rithm to that expression or function. At the second stage

AddButton(locLeft, "buttonChangeme",
 "Change me", 260, 80);

This creates a button at the location specified before with
the specific width and height in pixels. The button has
the title string “Change me”.

The general syntax of a CSCS command to create a widget
is the following:

AddWidget(widgetType, location, widgetName,
 initializationString, width, height);

There are shortcuts for some of the widget types, such as a
View, a Button, a Label, etc. The whole list of the functions
currently available for the mobile development is shown in
Tables 1, 2, and 3. This list is constantly growing, so check
the source code at GitHub for up-to-date developments.

The initialization string is context-sensitive. For a label
and a button, it sets its text (or its “title” in Android
terms). For the TextEdit, it sets a hint (or its “placehold-
er” in iOS terms). An example of this hint can be seen in
Listing 1. The initialization string can also provide the
image file name for the ImageView and the initialization
parameters for some widgets, like Switch and Slider.

I’ve used pixels in this layout; in a future article, you’re
going to see how to use DPS (density-independent pix-
els). Also, even though I’ve given absolute sizes here,
it’s easy to make adjustments and have widget sizes and
placement depend on the display size because you can
use the DisplayWidth and DisplayHeight functions to find
out the display size in pixels and use this information to
create a multiplication factor for coordinates and sizes.

That’s it, about the layout in CSCS. Now, using the location
defined in this section, you can create widgets anywhere
on the screen and position them relative to each other.

Example of the Layout in CSCS
Let’s see how to implement the layout shown in Figure 3
in CSCS.

The example in Figure 3 uses many different widgets.
Check its implementation in Listing 2.

Figure 3: An example of a layout on iOS and Android

public class UIVariable : Variable
{
 public enum UIType { NONE, LOCATION, VIEW, BUTTON, LABEL,
 TEXT_FIELD, TEXT_VIEW, PICKER_VIEW,
 IMAGE_VIEW, SWITCH, SLIDER };

 protected static int m_currentTag;

 public UIVariable(UIType type, string name = "",
 UIVariable refViewX = null,
 UIVariable refViewY = null)
 {
 WidgetType = type;
 WidgetName = name;
 RefViewX = refViewX;
 RefViewY = refViewY;
 }

 public UIType WidgetType { get; set; }
 public string WidgetName { get; set; }
 public int Width { get; set; }
 public int Height { get; set; }
 public int X { get; set; }
 public int Y { get; set; }
 public int TranslationX { get; set; }
 public int TranslationY { get; set; }

 public string RuleX { get; set; }
 public string RuleY { get; set; }

 public UIVariable Location { get; set; }
 public UIVariable RefViewX { get; set; }
 public UIVariable RefViewY { get; set; }
 public UIVariable ParentView { get; set; }
}

Listing 3: A fragment of the UIVariable class

48 codemag.comDeveloping Cross-Platform Native Apps with a Functional Scripting Language

The first step is to write a new class deriving from the
ParserFunction class, and to override its Evaluate()
method. Here’s an example for iOS:

public class GadgetSizeFunction : ParserFunction
{
 bool m_needWidth;
 public GadgetSizeFunction(
 bool needWidth = true)

of the algorithm, merging, you only have simple expres-
sions, like numbers or strings. And that second merging
stage takes into account the priorities of the operators.
The first step doesn’t take priorities into account.

The CSCS is a functional language where everything turns
around functions. Let’s see how to add a new function to
CSCS. I’ll start with simple ones: the functions returning
the device’s width and height.

public class iOSVariable : UIVariable
{
 public iOSVariable(UIType type, string name,
 UIView viewx = null, UIView viewy = null) :
 base(type, name)
 {
 m_viewX = viewx;
 m_viewY = viewy;
 if (type != UIType.LOCATION && m_viewX != null) {
 m_viewX.Tag = ++m_currentTag;
 }
 }
 public CGSize GetParentSize()
 {
 if (ParentView != null) {
 return new CGSize(ParentView.Width, ParentView.Height);
 }

 return UtilsiOS.GetScreenSize();
 }
 public UIView GetParentView()
 {
 iOSVariable parent = ParentView as iOSVariable;
 if (parent != null) {
 return parent.ViewX;
 }
 return AppDelegate.GetCurrentView();
 }

 UIView m_viewX;
 UIView m_viewY;
 string m_originalText;
 string m_alignment;
}

Listing 4: A fragment of the iOSVariable class

public class DroidVariable : UIVariable
{
 public DroidVariable(UIType type, string name, View viewx,
 View viewy = null) : base(type, name)
 {
 m_viewX = viewx;
 m_viewY = viewy;
 if (type != UIType.LOCATION && m_viewX != null) {
 m_viewX.Tag = ++m_currentTag;
 m_viewX.Id = m_currentTag;
 }
 }
 public void SetViewLayout(int width, int height)
 {
 DroidVariable refView = RefViewX as DroidVariable;
 m_viewLayout = MainActivity.CreateViewLayout(width, height,
 refView?.ViewLayout);

 }
 View m_viewX;
 View m_viewY;
 LayoutRules m_layoutRuleX;
 LayoutRules m_layoutRuleY;
 ViewGroup m_viewLayout; // If this is a parent itself.

 public static Size GetLocation(View view)
 {
 if (view == null) {
 return null;
 }
 int[] outArr = new int[2];
 view.GetLocationOnScreen(outArr);
 return new Size(outArr[0], outArr[1]);
 }
}

Listing 5: A fragment of the DroidVariable class

public class GetLocationFunction : ParserFunction
{
 protected override Variable Evaluate(ParsingScript script)
 {
 bool isList = false;
 List<Variable> args = Utils.GetArgs(script,
 Constants.START_ARG, Constants.END_ARG, out isList);

 string nameX = args[0].AsString();
 string ruleStrX = args[1].AsString();
 string nameY = args[2].AsString();
 string ruleStrY = args[3].AsString();

 int leftMargin = Utils.GetSafeInt(args, 4);
 int topMargin = Utils.GetSafeInt(args, 5);
 Variable parentView = Utils.GetSafeVariable(args, 6, null);

 DroidVariable refViewX = nameX == "ROOT" ? null :
 Utils.GetVariable(nameX, script) as DroidVariable;

 DroidVariable refViewY = nameY == "ROOT" ? null :
 Utils.GetVariable(nameY, script) as DroidVariable;

 DroidVariable location = new DroidVariable(
 UIVariable.UIType.LOCATION, nameX, refViewX, refViewY);

 location.SetRules(ruleStrX, ruleStrY);
 location.ParentView = parentView as DroidVariable;
 location.TranslationX = leftMargin;
 location.TranslationY = topMargin;
 return location;
 }
}

Listing 6: Getting a Location for Android

Tower 48 is the most advanced and affordable digital escrow solution available. Designed and built specifically for software and other
digital assets, Tower 48 makes escrow inexpensive and hassle free. Better yet, as a vendor, you can turn escrow into a service you offer to
your customers and create a new revenue stream for yourself.
Regardless of whether you are a vendor who wants to offer this service to their customers, or whether you are a customer looking for extra
protection, visit our web site to start a free and hassle-free trial account or to learn more about our services and digital escrow in general!

Visit www.Tower48.com for more information!

Affordable High-Tech
Digital Escrow

Less than

$1
per day!

VENDORS: ADD A REVENUE STREAM BY OFFERING ESCROW TO YOUR CUSTOMERS!

50 codemag.comDeveloping Cross-Platform Native Apps with a Functional Scripting Language

public class AddWidgetFunction : ParserFunction
{
 public AddWidgetFunction(string widgetType = "")
 {
 m_widgetType = widgetType;
 }
 protected override Variable Evaluate(ParsingScript script)
 {
 string widgetType = m_widgetType;
 int start = string.IsNullOrEmpty(widgetType) ? 1 : 0;
 bool isList = false;
 List<Variable> args = Utils.GetArgs(script,
 Constants.START_ARG, Constants.END_ARG, out isList);

 if (start == 1) {
 widgetType = args[0].AsString();
 Utils.CheckNotEmpty(script, widgetType, m_name);
 }

 iOSVariable location = args[start] as iOSVariable;
 Utils.CheckNotNull(location, m_name);

 double screenRatio = UtilsiOS.GetScreenRatio();

 string varName = args[start + 1].AsString();
 string text = Utils.GetSafeString(args, start + 2);

 int width = (int)(Utils.GetSafeInt(args, start + 3) /
 screenRatio);
 int height = (int)(Utils.GetSafeInt(args, start + 4) /
 screenRatio);

 location.SetSize(width, height);
 CGSize parentSize = location.GetParentSize();

 location.X = UtilsiOS.String2Position(location.RuleX,
 location.ViewX, location, parentSize, true);
 location.Y = UtilsiOS.String2Position(location.RuleY,
 location.ViewY, location, parentSize, false);

 location.X += location.TranslationX;
 location.Y += location.TranslationY;

 CGRect rect = new CGRect(location.X, location.Y,
 width, height);
 iOSVariable widgetFunc = GetWidget(widgetType, varName,
 text, rect);

 Utils.CheckNotNull(widgetFunc, m_name);

 var currView = location.GetParentView();
 currView.Add(widgetFunc.ViewX);

 iOSApp.AddView(widgetFunc.ViewX);

 ParserFunction.AddGlobal(varName,
 new GetVarFunction(widgetFunc));
 return widgetFunc;
 }

 public static iOSVariable GetWidget(string widgetType,
 string widgetName, string initArg, CGRect rect)
 {
 UIVariable.UIType type = UIVariable.UIType.NONE;
 UIView widget = null;
 switch (widgetType)
 {
 case "Button":
 type = UIVariable.UIType.BUTTON;
 widget = new UIButton(rect);
 ((UIButton)widget).SetTitleColor(UIColor.Black,
 UIControlState.Normal);
 ((UIButton)widget).SetTitle(initArg,
 UIControlState.Normal);
 AddBorderFunction.AddBorder(widget);
 break;
 case "Label":
 type = UIVariable.UIType.LABEL;
 widget = new UILabel(rect);
 ((UILabel)widget).TextColor = UIColor.Black;
 ((UILabel)widget).Text = initArg;
 break;
 case "TextEdit":
 type = UIVariable.UIType.TEXT_FIELD;
 widget = new UITextField(rect);
 ((UITextField)widget).TextColor = UIColor.Black;
 ((UITextField)widget).Placeholder = initArg;
 MakeBottomBorder(widget);
 break;
 // All other widgets go here...
 }
 }
}

Listing 7: Adding a Widget. Fragments from the AddWidgetFunction class

 {
 m_needWidth = needWidth;
 }
 protected override Variable Evaluate(
 ParsingScript script)
 {
 var nb = UIScreen.MainScreen.NativeBounds;
 return new Variable(m_needWidth ?
 nb.Width : nb.Height);
 }
}

As you can see, the function just gets the screen bounds con-
taining both the width and the height, and returns either the
width, or the height, depending on the initialization parameter.

Here is the same function implementation for Android:

public class GadgetSizeFunction : ParserFunction
{
 bool m_needWidth;
 public GadgetSizeFunction(bool needWidth=true)
 {
 m_needWidth = needWidth;
 }
 protected override Variable Evaluate(
 ParsingScript script)
 {
 DisplayMetrics dm = new DisplayMetrics();
 MainActivity.TheView.WindowManager.
 DefaultDisplay.GetMetrics(dm);
 return new Variable(m_needWidth ?
 dm.WidthPixels : dm.HeightPixels);
 }
}

51codemag.com Developing Cross-Platform Native Apps with a Functional Scripting Language

public static int String2Position(string param, UIView
 referenceView, iOSVariable location, CGSize parentSize, bool isX)
{
 bool useRoot = referenceView == null;

 int refX = useRoot ? 0 : (int)referenceView.Frame.Location.X;
 int refY = useRoot ? 0 : (int)referenceView.Frame.Location.Y;
 int refWidth = useRoot ? (int)parentSize.Width :
 (int)referenceView.Frame.Size.Width;
 int refHeight = useRoot ? (int)parentSize.Height :
 (int)referenceView.Frame.Size.Height;
 int parentWidth = (int)parentSize.Width;
 int parentHeight = (int)parentSize.Height;
 int widgetWidth = (int)location.Width;
 int widgetHeight = (int)location.Height;

 switch (param) {
 case "ALIGN_LEFT": // X
 return useRoot ? 0 :
 refX;
 case "LEFT": // X
 return useRoot ? 0 :
 refX - widgetWidth;
 case "ALIGN_RIGHT": // X
 return useRoot ? parentWidth - widgetWidth :
 refX + refWidth - widgetWidth;
 case "RIGHT": // X
 return useRoot ? parentWidth - widgetWidth :
 refX + refWidth;
 case "ALIGN_PARENT_TOP":
 case "ALIGN_TOP": // Y
 return useRoot ? ROOT_TOP_MIN :
 refY;
 case "TOP":

 return useRoot ? ROOT_TOP_MIN :
 refY - widgetHeight;
 case "ALIGN_PARENT_BOTTOM":
 case "ALIGN_BOTTOM":
 int offset1 = useRoot ? parentHeight - widgetHeight –
 ROOT_BOTTOM_MIN :
 refY + refHeight - widgetHeight;
 // if there is a tabbar, move the bottom part up:
 if (useRoot && !isX) {
 offset1 -= (int)(iOSApp.CurrentOffset * 0.8);
 }
 return offset1;
 case "BOTTOM":
 int offset2 = useRoot ? parentHeight - widgetHeight –
 ROOT_BOTTOM_MIN :
 refY + refHeight;
 // if there is a tabbar, move the bottom part up:
 if (useRoot && !isX) {
 offset2 -= (int)(iOSApp.CurrentOffset * 0.8);
 }
 return offset2;
 case "CENTER":
 if (useRoot) {
 return isX ? (parentWidth - widgetWidth) / 2 :
 (parentHeight - widgetHeight) / 2 ;
 } else {
 return isX ? refX + (refWidth - widgetWidth) / 2 :
 refY + (refHeight - widgetHeight) / 2;
 }
 default:
 return 0;
 }
}

Listing 8: Translating a Relation Parameter to a Position on iOS

The second step, after implementing the functions in C#,
is to register them with the parser. This registration is
now the same for iOS and Android, and it’s the following:

ParserFunction.RegisterFunction("DisplayWidth",
 new GadgetSizeFunction(true));
ParserFunction.RegisterFunction("DisplayHeight",
 new GadgetSizeFunction(false));

This means that as soon as the parser finds the Display-
Width token, the Evaluate() method of the GadgetSize-

Function object initialized with m_needWidth = true is
called and as soon as the parser finds the DisplayHeight
token, the Evaluate() method of the GadgetSizeFunc-
tion object initialized with m_needWidth = false is
called.

That’s it! In my previous article, there was an additional
step to register any possible translations supplied in a
configuration file, but I’ll skip it here for brevity. This
is how easy it is to add a new functionality to the CSCS
scripting language: Implement an Evaluate method in

using System.Collections.Generic;
using System.Linq.Expressions;
using System.Reflection;

static Dictionary<string, Func<string, string>> m_compiledCode =
 new Dictionary<string, Func<string, string>>();

public static Variable InvokeCall(Type type, string methodName,
 string paramName, string paramValue, object master = null)
{
 string key = type + "_" + methodName + "_" + paramName;
 Func<string, string> func = null;

 // Cache compiled function:
 if (!m_compiledCode.TryGetValue(key, out func)) {
 MethodInfo methodInfo = type.GetMethod(methodName,
 new Type[] { typeof(string) });

 ParameterExpression param = Expression.Parameter(
 typeof(string), paramName);

 MethodCallExpression methodCall = master == null ?
 Expression.Call(methodInfo, param) :
 Expression.Call(Expression.Constant(master),
 methodInfo, param);
 Expression<Func<string, string>> lambda =
 Expression.Lambda<Func<string, string>>(methodCall,
 new ParameterExpression[] { param });
 func = lambda.Compile();
 m_compiledCode[key] = func;
 }

 string result = func(paramValue);
 return new Variable(result);
}

Listing 9: Invoking and caching a method using Reflection in C#s

52 codemag.comDeveloping Cross-Platform Native Apps with a Functional Scripting Language

ment of this class is shown in Listing 3. The iOSVariable
and DroidVariable are concrete implementations of the
UIVariable for the iOS and Android correspondingly. They
are shown in Listing 4 and Listing 5.

The first step in a layout operation in CSCS is to get a
location for the widget. Listing 6 shows the implementa-
tion of getting a location for Android. The implementa-
tion for iOS is very similar.

Once you have a location, you can place the widget there.
The code for Android is a bit more straightforward (be-
cause the placement is done on a RelativeLayout), so I’ll
show the code for placing the iOS widgets. The code here
is not complete and I encourage you to check out the
details in the accompanying source code.

There’s one main function for adding a widget to the screen,
and which is used for all types of widgets, AddWidgetFunc-
tion. There are a few exceptions to this, such as pop-up dia-
logs, like an Alert Dialog or a Toast, that are implemented
differently. In order to use the same function for different
widgets, register functions that add widgets, as follows:

ParserFunction.RegisterFunction("AddButton",
 new AddWidgetFunction("Button"));
ParserFunction.RegisterFunction("AddLabel",
 new AddWidgetFunction("Label"));
ParserFunction.RegisterFunction("AddTextEdit",
 new AddWidgetFunction("TextEdit"));

Continue on in that fashion. Listing 7 shows the imple-
mentation of the AddWidgetFunction class on iOS.

The function responsible for the translation of the ALIGN_
LEFT, BOTTOM, CENTER, etc. parameters to the concepts
that iOS and Android understand is called String2Posi-
tion. This function is shown in Listing 8. Depending on
the layout parameters, it returns a coordinate of the
point where you place the widget.

Calling the Native C# Functions
from the CSCS Code
It may be more convenient to use already-existing C#
code from the CSCS code and get the results back into
CSCS. Even though any feature of C# can be implemented
in CSCS, this may require some time, and the C# code may
be already available.

Let’s see an example of how the C# code receives an ar-
gument from CSCS, gets the current time, and returns a
string back to CSCS. Then this string is shown as a button
title. Here’s the CSCS implementation:

clicks = 0;
function click(sender, arg) {
 clicks++;
 title = CallNative("ProcessClick", "arg",
 clicks);
 SetText(sender, title);
}
loc1 = GetLocation("ROOT", "LEFT",
 "ROOT", "BOTTOM");
AddButton(loc1, "but1", "Left", 220, 80);
AddAction(but1, "click");

a new class deriving from the ParserFunction class and
then register it with the parser!

The Evaluate method returns an object of the Variable
class. This is a generic object used in CSCS scripting. For
mobile development, you need a more customized object.

The UIVariable class derives from the variable class and
is a wrapper over all of the widgets and locations. A frag-

Figure 4: Getting the button title from the C# code

public class InvokeNativeFunction : ParserFunction
{
 protected override Variable Evaluate(ParsingScript script)
 {
 string methodName = Utils.GetItem(script).AsString();
 Utils.CheckNotEmpty(script, methodName, m_name);

 string paramName = Utils.GetToken(script,
 Constants.NEXT_ARG_ARRAY);
 Utils.CheckNotEmpty(script, paramName, m_name);

 Variable paramValueVar = Utils.GetItem(script);
 string paramValue = paramValueVar.AsString();

 var result = Utils.InvokeCall(typeof(Statics),
 methodName, paramName, paramValue);
 return result;
 }
}

Listing 10: The implementation of InvokeNativeFunction class

Figure 5: Various Widgets on iOS and Android

53codemag.com Developing Cross-Platform Native Apps with a Functional Scripting Language

References

How to Write Your Own
Programming Language in C#:
http://www.codemag.com/
article/1607081

Microsoft Visual Studio
Community 2017 License
Terms: https://www.visualstudio.
com/license-terms/mlt553321/

Android Layout: https://
developer.android.com/guide/
topics/ui/declaring-layout.html

Apple Auto Layout: https://
developer.apple.com/library/
content/documentation/
UserExperience/Conceptual/
AutolayoutPG/index.html

GitHub CSCS Source Code:
https://github.com/vassilych/
mobile

Installing Visual Studio 2017
with Xamarin: https://blog.
xamarin.com/installing-visual-
studio-2017-made-easy

sound_clicks = 0;
function sound_click(sender, arg) {
 sound_clicks++;
 if (sound_clicks % 2 == 0) {
 enable_sound();
 } else {
 disable_sound();
 }
}
function enable_sound() {
 SetText(buttonCenterLeft, "Sound On");
 SetImage(imgView, "sound_on");
 SetValue(switch, 1);
}
function disable_sound() {
 SetText(buttonCenterLeft, "Sound Off");
 SetImage(imgView, "sound_off");
 SetValue(switch, 0);
}
function slider_change(sender, arg) {
 if (GetValue(slider) > 1) {
 enable_sound();
 } else {
 disable_sound();
 }
}
function pickerMove(row) {
 SetBackground(countryImages[row]);
}

countryImages = {"us_bg", "gb_bg", "de_bg", "ch_bg", "ru_bg", "mx_bg", "es_

bg", "br_bg", "fr_bg", "it_bg", "cn_bg", "jp_bg", "ar_bg"};
countries = {"English US", "English", "Deutsch", "Deutsch CH", "Русский",
"Español MX", "Español", "Português BR", "Français", "Italiano", "中文", "日
本語", "ةيبرعلا"};

locPicker = GetLocation("ROOT", "CENTER", "ROOT", "TOP", 0, -20);
AddWidget("TypePicker", locPicker, "pickerColor", "Picker",
 380, 280);
AddWidgetData(pickerColor, countries, "pickerMove");
pickerMove(0);

locCenterLeft = GetLocation("ROOT", "CENTER", "ROOT", "CENTER",
 -100, 0);
AddButton(locCenterLeft, "buttonCenterLeft", "Sound On", 240, 80);
AddBorder(buttonCenterLeft, 2, 8, "#000080");
AlignText(buttonCenterLeft, "left");
AddAction(buttonCenterLeft, "sound_click");

locCenterRight = GetLocation("ROOT", "CENTER", "ROOT", "CENTER",
 100, 0);
AddImageView(locCenterRight, "imgView", "sound_on", 100, 100);

locCenter2 = GetLocation(imgView, "RIGHT", imgView, "CENTER",
 20, 0);
AddSwitch(locCenter2, "switch", "1", 80, 80);
AddAction(switch, "sound_click");

locCenterDown = GetLocation(buttonCenterLeft, "CENTER", buttonCenterLeft,
"BOTTOM", 0, 20);
AddSlider(locCenterDown, "slider", "0:100", 200, 80);
AddAction(slider, "slider_change");

Listing 11: Playing with Widgets: CSCS code

ing 10, the method is implemented in the Statics class
that I added in the shared project area. In the Stat-
ics class, you can implement all of the methods called
from C# and the same code is called from both iOS and
Android:

public class Statics
{
 public static string ProcessClick(string arg)
 {
 var now = DateTime.Now.ToString("T");
 return "Clicks: " + arg + "\n" + now;
 }
}

Very similarly, you can also implement calling functions
with a different number of arguments or with different
argument types.

Where the CSCS Script Execution
is Triggered in C# Code
One important question is: Where exactly in the flow do
you execute the CSCS script?

For iOS, the answer is easier than for Androi.: In iOS, it
can be done just at the end of the AppDelegate.Finished-
Launching() method.

For Android, the first attempt to run the CSCS script at
the end of the MainActivity.OnCreate() method failed.
The reason was that the global layout has not been com-
pletely initialized in the OnCreate() method.

loc2 = GetLocation("but1", "RIGHT",
 "ROOT", "BOTTOM");
AddButton(loc2, "but2", "Right", 220, 80);
AddAction(but2, "click");

The result of executing this script and clicking a few times
on each button is shown in Figure 4.

Let’s see how it’s implemented. Listing 9 contains the
C# implementation of invoking a method with one string
parameter that returns a string. The implementation for
methods with a different number of parameters or with
different types of arguments, is analogous.

You can see that you cache the compiled function to be ex-
ecuted. The effect of caching is quite noticeable visually:
The first click takes a longer time than the consequent
ones, especially on Android. You can also pre-cache com-
monly called functions at the start-up phase.

This InvokeCall() method is called from a Parser func-
tion, which is the first point of contact in the C# code
with CSCS. The iOS and Android implementation is the
same and it’s shown in Listing 10.

To glue everything together, you need to register the In-
vokeNativeFunction with the parser:

ParserFunction.RegisterFunction("CallNative",
 new InvokeNativeFunction());

What’s left is the actual implementation of the method
being called from the CSCS code. As you saw in List-

54 codemag.comDeveloping Cross-Platform Native Apps with a Functional Scripting Language

 var ob =
 MainActivity.TheLayout.ViewTreeObserver;
 ob.RemoveOnGlobalLayoutListener(this);
 MainActivity.RunScript();
 }
}

In the RunScript method, you register all of the Parser
functions right before the parser execution is started.
Here’s a fragment from the RunScript method:

public static void RunScript()
{
 ParserFunction.RegisterFunction("_IOS_", new
 CheckOSFunction(CheckOSFunction.OS.IOS));

 // ... Registration of all other functions
 // with the Parser here ...

 string script = "";
 AssetManager assets = TheView.Assets;
 using (StreamReader sr = new StreamReader(
 assets.Open("script.cscs"))) {
 script = sr.ReadToEnd();

The trick is to register a listener that will be triggered as
soon as the global layout is initialized:

protected override void OnCreate(Bundle
 savedInstanceState)
{
 base.OnCreate(savedInstanceState);
 //some other stuff

 ViewTreeObserver ob =
 relativelayout.ViewTreeObserver;
 ob.AddOnGlobalLayoutListener(
 new LayoutListener());
}

In the listener code, first you unregister the listener
(otherwise it will be triggered on every change to the
layout) and then run the CSCS script:

public class LayoutListener : Java.Lang.Object,
 ViewTreeObserver.IOnGlobalLayoutListener
{
 public void OnGlobalLayout()
 {

Table 1: CSCS Cross-Platform Functions for Adding Widgets

CSCS Function Description
GetLocation(referenceX, relationX, referenceY,
relationY, marginX, marginY, parentView)

Creates a location relative to the other widget “referenceX” locations horizontally and “referenceY” vertically.
Optionally, additional margins on the X and Y axes can be supplied. If the parentView is specified, the widget
is constructed inside of it.

AddWidget(type, widgetName, location,
initString, width, height)

A generic function to add a widget at a given location with the initialization string and with a given width and
height. Particular specializations for different widget types follow.

AddView(widgetName, location, initString,
width, height)

Adds a UIView on iOS and a RelativeLayout on Android to place additional widgets inside of it.

AddButton(widgetName, location, initString,
width, height)

Adds a UIButton on iOS and a Button on Android with a given title string from the initString. The button has a
border (it can be removed with AddBorder function below).

AddLabel(widgetName, location, initString,
width, height)

Adds a UILabel on iOS and a TextView on Android with a given text string from the initString.

AddTextView(widgetName, location, initString,
width, height)

Adds a UITextView on iOS and a TextEdit on Android with a given text string from the initString.

AddTextEdit(widgetName, location, initString,
width, height)

Adds a UITextField on iOS and a TextEdit on Android with a given text hint (or a placeholder in iOS terms) from
the initString.

AddImagetView(widgetName, location,
initString, width, height)

Adds a UIImageView on iOS and an ImageView on Android with a given image filename from the initString.

AddSwitch(widgetName, location, initString,
width, height)

Adds a UISwitch on iOS and a Switch on Android. The initString argument must be either a 0 or a 1, indicating
the initial switch state.

AddSlider(widgetName, location, initString,
width, height)

Adds a UISlider on iOS and a SeekBar on Android. The initString argument must have format
“fromNumber:toNumber”, e.g. “0:100”.

AddStepper(widgetName, location, initString,
width, height)

Adds a UIStepper on iOS and two Buttons on Android. The initString argument must have format
“fromNumber:toNumber”, e.g. “0:100”.

AddStepperLeft(widgetName, location,
initString, width, height)

Adds a stepper as in AddStepper but also with the label with the stepper current value on the left of the
stepper.

AddStepperRight(widgetName, location,
initString, width, height)

Adds a stepper as in AddStepper but also with the label with the stepper current value on the right of the
stepper.

AddCombobox(widgetName, location,
initString, width, height)

Adds a UITypePicker on iOS and a Spinner on Android. It can be populated via AddWidgetData and
AddWidgetImages functions.

AddSegmentedControl(widgetName, location,
initString, width, height)

Adds a UISegmentedControl on iOS and either a Switch (for two segments) or buttons on Android. InitString
specifies number of segments.

AddTypePicker(widgetName, location,
initString, width, height)

Adds a UITypePicker on iOS and a NumberPicker on Android. The initString argument is not used. Used
together with AddWidgetData.

AddListView (widgetName, location, initString,
width, height)

Adds a UITableView on iOS and a ListView on Android. It can be populated via AddWidgetData and
AddWidgetImages functions.

55codemag.com Developing Cross-Platform Native Apps with a Functional Scripting Language

Also, there is a Button, an ImageView, a Switcher, and a Slid-
er. As soon as you click the Button, or the Switcher, or change
the value of the Slider, the other widgets also change.

Listing 11 shows how it’s implemented in CSCS.

Finally, Tables 1, 2, and 3 contain all currently available
functions for mobile development in CSCS.

I’m sure by the time you read this, there’ll be many more
functions available: Don’t forget to check out my github.
com page in the links section.

Wrapping Up
Using the CSCS scripting language, you can write cross-
platform applications that run natively on any device.

You can proceed as follows: Download the sample project
in the accompanying source code download section and
start playing with the script.cscs file there.

 }
 Interpreter.Instance.Process(script);
}

Widgets, Widgets, Widgets
Once you know how to build the layout, another impor-
tant part of the CSCS scripting language is to be able to
use as many widgets as possible. You can see what’s cur-
rently implemented in Table 1, 2, and 3, but I’m sure that
by the time you read this article, many more widgets will
be implemented. Just check the accompanying source-
code download at the GitHub link or go to the CODE
Magazine website and download it from the article’s link.

As a final example, let’s see how the widgets shown in
Figure 5 are implemented.

There’s a TypePicker on the top: As soon as you change
the value there by moving the picker’s wheel, a different
background image is shown.

Table 2: CSCS Cross-Platform Functions: UI Manipulation

CSCS Function Description
AddWidgetData(widgetName, data,
selectAction)

Adds a list of string data to the widget. Also registers the selectAction CSCS function to be called when an
entry is selected.

AddWidgetImages(widgetName,
images)

Adds a list of images (specified as image filenames) to the widget.

AddAction(widgetName, callback) Adds a widget action on clicking event. If the widgetName is ROOT, then adds a global action, e.g., for a Tab
app is OnTabSelected.

AutoScale(scale) Automatically scales all the widgets according to the display resolution. The scale parameter is optional and
it’s 1.0 by default. The widgets can be scaled individually as well.

AddLongClick(widgetName,
 callback)

Adds a widget action on a long clicking event, i.e., when the user presses and holds for a few seconds.

AddSwipe(widgetName,
 callback)

Adds detection of swiping left, right, up, and down. Calls callback, passing as an argument what type of the
swipe event happened.

AddDragAndDrop(widgetName,
 callback)

Adds drag and drop functionality. Moves widget till the finger is lifted.

AddBorder(widgetName, width,
 corner, color)

Adds a border around a widget. If the width is 0, removes existing border. The color is optional and is black by
default.

AddTab(tabName, activeImage, inactiveImage) Adds a tab to the app with corresponding active and inactive images.

GetSelectedTab() Returns index of a tab that is active in the running app.
SelectTab(index) Programmatically activates a tab.
AlignText(widgetName, alignType) Aligns text according to the alignType, which can be left, right, center, justified, fill or natural.

GetText(widgetName) Returns widget’s text.
SetText(widgetName, text) Sets text to the widget.
GetValue(widgetName) Returns widget value (an integer, Boolean, or a double).
SetValue(widgetName, value) Sets value to the widget (an integer, Boolean, or a double).
SetImage(widgetName, imageFile) Sets image on a widget.
SetBackground(imageFile) Sets background image on the root view.
SetBackgroundColor(widgetName, color) Sets background color on a widget. If the widget name is ROOT, sets background color on the root view.
SetSize(widgetName, width, height) Sets widget’s height and width.
SetFontSize(widgetName, fontSize) Sets the font size of a widget.
ShowView(widgetName) Shows a widget (or a view / layout).
HideView(widgetName) Hides a widget (or a view / layout).
Move(widgetName, x, y) Moves a widget x pixels right and y pixels down (for a negative, x moves it left and for a negative y, moves it

up).
RemoveView(widgetName) Removes passed view (or widget name) from the layout.
RemoveAllViews() Removes all views from the layout. This can be used on the orientation change, when rebuilding the layout.

56 codemag.comDeveloping Cross-Platform Native Apps with a Functional Scripting Language

your script run. Then, you register the new function with
the parser, as you’ve seen in this article.

Another advantage of CSCS is that not all of the code
must be written in it, but it can be combined with other
code written in C#. For example, you can use CSCS for the
pure GUI development. You also saw how you can call a
C# function from the CSCS code and virtually eliminate
any overhead due to the marshalling by pre-compiling
the Reflection functions.

I’m looking forward to getting any feedback you have for
programming in CSCS for the mobile development.

The features presented in this article constitute a small
fraction of what you can do with CSCS. I plan to expose
more advanced topics in the next articles. Some of these
future topics are: advanced controls and widgets, in-app
purchases, text-to-speech, voice recognition, localization,
easy ways of having different layouts in different device ori-
entations, and adding advertising content (like Google Ad-
Mob), just to name a few. Everything can be made in CSCS.

But more importantly, it’s relatively straightforward to
modify the existing functionality of CSCS, or to add new
functions.

To add a new function to CSCS, you need to create a class
deriving from the ParserFunction class and override its
Evaluate method for all of the platforms where you want

CSCS Function Description
CallNative(methodName, argName, argValue) Calls a native C# method, having given parameters. The C# method has one string argument and returns a

string.

GetRandom(limit,numberOfValues) A pseudo-random number generator returning a list of generated numbers between 0 and limit (exclusive
limit).

ShowToast(message, duration, bg_color,
fg_color)

Shows a Toast on Android and a custom Toast implementation on iOS. The last two parameters are optional.

AlertDialog(type, title, message, button1,
action1, button2, action2)

Shows an alert dialog to the user. The last three parameters are optional; the dialog is dismissed if there is no
action.

Speak(phrase, voice, rate, pitch) Adds Text-To-Speech functionality. Only phrase is a mandatory parameter. The default voice is “en-US”. The
speech rate and pitch are between 0 and 1.

VoiceRecognition(callback, voice) Starts voice recognition and calls the callback function on completion, passing the recognized phrase as an
argument. The default voice is “en-US”.

ReadFile(filename) Reads file form the device assets directory. Returns a list of lines of that file.

Schedule(timeout, callback, timerId) Schedule execution of the callback function after the timeout milliseconds on the main GUI thread. The
timerId is passed as an argument to the callback.

GetSetting(settingName, type, defaultValue) Gets setting value from the device settings settings. Type can be “float”, “int”, “string” or “bool”. The
defaultValue is optional.

SetSetting(settingName, value, type) Saves passed setting on the device so that later it can be retrieved by the GetSetting() function.

GetDeviceLocale() Returns the language locale of the device.

SetAppLocale(localeName) Sets the locale of the app. Used closely with the Localized() function. The expected format of the localeName
is “en-US”, “es-MX”, etc.

Localize(text, language) Localizes passed text to the current program language (by default device language). If an optional parameter
“language” is set, localizes to that language.

InitIAP(publicKey) Initializes In-App Purchase (Billing) service, connecting to the Apple App Store or to the Google Play Store.

Restore(callback , productId1, productId2, …) Checks if given products have been purchased before, connecting to the Apple App Store or to the Google Play
Store.

Purchase(callback, productId) Purchases a product with the given product ID, connecting to the Apple App Store or to the Google Play Store.

InitAds(appId, interstitialId, bannerId) Inits the Google AdMob advertisement framework with the initialization parameters, previously requested at
https://www.google.com/admob

AddBanner(widgetName, location, bannerType) Adds a BannerView on iOS and an AdView on Android for the Google AdMob network. The bannerType can be
either SmartBanner, MediumRectangle, Banner, LargeBanner, FullBannner, or Leadeboard.

ShowInterstitial() Shows an interstitial (full screen) advertisement from the Google AdMob network.

OnOrientationChange(callback) Calls the callback function when there’s a widget orientation change, passing as a parameter the new
orientation (portrait or landscape).

Orientation Current device orientation (e.g. Landscape or Portrait).

DisplayWidth Returns the width of the display in pixels.

DisplayHeight Returns the height of the display in pixels.

ANDROID Returns true if and only if the current code is being executed on an Android device.

IOS Returns true if and only if the current code is being executed on iOS.

VERSION Returns version of the smartphone operating system.

Table 3: CSCS Cross-Platform not GUI Modification Related Functions

 Vassili Kaplan

57Title articlecodemag.com

58 codemag.comImplementing Machine Learning Using Python and Scikit-learn

ONLINE QUICK ID 1711091

Implementing Machine Learning
Using Python and Scikit-learn
In my previous article (“Getting Started with Machine Learning Using Microsoft Azure ML Studio”, http://www.codemag.
com/article/1709071), I explained the concepts behind machine learning and got you started using the Microsoft Azure
Machine Learning Studio (MAML). For beginners, the MAML is a really good way to dabble with machine learning without

possessing the mathematical prerequisites that are
usually required of a data scientist. However, to really
implement machine learning, you need to move beyond
MAML and be able to implement your learning models
programmatically. This has the advantage of fine-tuning
the models to your needs, and, at the same time, afford-
ing you the flexibility to deploy the models in whatever
manner you want.

One of the languages that’s most popular with data sci-
entists is Python. With its vast amount of third-party
library support, Python is well-suited for implement-
ing machine learning. In this article, I’ll build a couple
of models using Python and its accompanying library
Scikit-learn. Although Python is popular among data
scientists, another language remains popular among
statisticians: R. I don’t have the luxury of space to delve
into R programming in this article, but I’ll provide the
solution for the Titanic problem in both Python and R
so that enthusiasts can devour them over the weekends.

Introduction to Scikit-learn
In one of my earlier articles on Data Science (“Introduc-
tion to Data Science using Python”, http://www.codemag.
com/article/1611081), you learned how to use Python to-
gether with libraries such as NumPy and Pandas to perform
number crunching, data visualization, and analysis. For
machine learning, you can also use these libraries to build
learning models. However, doing so requires that you have
a strong appreciation of the mathematical foundation for
the various machine learning algorithms. This isn’t a triv-
ial matter. Instead of implementing the various machine-
learning algorithms manually, fortunately, someone else
has already done the hard work for you.

Scikit-learn is a Python library that implements the vari-
ous types of machine learning algorithms, such as classi-
fication, regression, clustering, decision tree, and more.
Using Scikit-learn, implementing machine learning is
now simply a matter of supplying the appropriate data to
a function so that you can fit and train the model.

Getting Datasets
Often, one of the challenges in machine learning is
obtaining sample datasets for experimentation. Fortu-
nately, Scikit-learn comes with a few standard sample
datasets, which makes learning machine learning easy.

To load the sample datasets, import the datasets module
and load the desired dataset. For example, the following
code snippets load the Iris dataset:

from sklearn import datasets
iris = datasets.load_iris()
print(iris) # raw data of type Bunch

The dataset loaded is a Bunch object, which is a Python
dictionary that provides attribute-style access. You can
use the DESCR property to obtain a description of the
dataset:

print(iris.DESCR)

More importantly, you can obtain the features of the da-
taset using the data property:

print(iris.data) # Features

The above statement prints the following:

[[5.1 3.5 1.4 0.2]
 [4.9 3. 1.4 0.2]
 ...
 [6.2 3.4 5.4 2.3]
 [5.9 3. 5.1 1.8]]

You can also use the feature_names property to print
the names of the features:

print(iris.feature_names) # Feature Names

The above statement prints the following:

 ['sepal length (cm)', 'sepal width (cm)',
 'petal length (cm)', 'petal width (cm)']

This means that the dataset contains four columns:
sepal length, sepal width, petal length, and petal width.
To print the label of the dataset, use the target prop-
erty. For the label names, use the target_names prop-
erty:

print(iris.target) # Labels
print(iris.target_names) # Label names

The above prints out the following:

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
2 2 2 2 2 2 2 2]
['setosa' 'versicolor' 'virginica']

Note that not all sample datasets support the feature_
names and target_names properties.

Figure 1 summarizes how the dataset looks:

Wei-Meng Lee
weimenglee@learn2develop.net
www.learn2develop.net
@weimenglee

Wei-Meng Lee is a technologist
and founder of Developer
Learning Solutions
(http://www.learn2develop.net),
a technology company special-
izing in hands-on training
on the latest technologies.
Wei-Meng has many years of
training experiences and his
training courses place special
emphasis on the learning-
by-doing approach. His hands-
on approach to learning
programming makes under-
standing the subject much
easier than reading books,
tutorials, and documentation.
His name regularly appears in
online and print publications
such as DevX.com, MobiForge.
com, and CODE Magazine.

59codemag.com Implementing Machine Learning Using Python and Scikit-learn

The Fisher’s Iris Flower
Dataset

The Fisher’s (a British statistician
and biologist) Iris flower data set
consists of 50 samples from each
of three species of Iris (Iris setosa,
Iris virginica, and Iris versicolor).
Four features were measured
from each sample: the length
and the width of the sepals and
petals, in centimeters. Based on
the combination of these four
features, Fisher developed a linear
discriminant model to distinguish
the species from each other.

axis range for x and y
plt.axis([1.5, 1.85, 50, 90])
plt.grid(True)

When you plot a chart of weights against heights, you’ll
see the figure shown in Figure 2.

From the chart, you can see that there’s a positive co-
relation between the weights and heights for that group
of people. You could draw a straight line through the
points and use that to predict the weight of another per-
son based on height.

Using the LinearRegression Class for Fitting the Model
So how do you draw the straight line that cuts though all
the points? It turns out that the Scikit-learn library has
a LinearRegression class that helps you to do just that.
All you need to do is to create an instance of this class
and use the heights and weights lists to create a linear
regression model using the fit() function, like this:

from sklearn.linear_model
 import LinearRegression

Create and fit the model
model = LinearRegression()
model.fit(heights, weights)

Once you’ve fitted the model, you can start to make pre-
dictions using the predict() function, like this:

make prediction
weight = model.predict([[1.75]])[0][0]
print(weight)
76.0387650086

Plotting the Linear Regression Line
It would be useful to visualize the linear regression line
that’s been created by the LinearRegression class. Let’s
do this by first plotting the original data points and
then sending the heights list to the model to predict
the weights. Then plot the series of forecasted weights
to obtain the line. The following statements show how
this is done:

import matplotlib.pyplot as plt

heights = [[1.6], [1.65], [1.7], [1.73], [1.8]]

Often, it’s useful to convert the data to a Pandas
DataFrame so that you can manipulate it easily:

import pandas as pd
df = pd.DataFrame(iris.data)
 # convert features
 # to dataframe in Pandas
print(df.head())

The above statements print out the following:

 0 1 2 3
0 5.1 3.5 1.4 0.2
1 4.9 3.0 1.4 0.2
2 4.7 3.2 1.3 0.2
3 4.6 3.1 1.5 0.2
4 5.0 3.6 1.4 0.2

Besides the Iris dataset, you can also load some interest-
ing datasets, such as the following:

data on breast cancer
breast_cancer = datasets.load_breast_cancer()

data on diabetes
diabetes = datasets.load_diabetes()

dataset of 1797 8x8 images of hand-written
digits
digits = datasets.load_digits()

Solving Regression Problems
Using Linear Regression
The easiest way to get started is with Linear Regression.
Linear Regression is a linear approach for modeling the
relationship between a scalar dependent variable Y and
one or more explanatory variables (or independent vari-
ables). For example, let’s say that you have a set of data
consisting of the heights of a group of people and their
corresponding weights:

%matplotlib inline
import matplotlib.pyplot as plt

represents the heights of a group of people
heights = [[1.6], [1.65], [1.7], [1.73], [1.8]]

represents the weights of a group of people
weights = [[60], [65], [72.3], [75], [80]]

plt.title('Weights plotted against heights')
plt.xlabel('Heights in metres')
plt.ylabel('Weights in kilograms')

plt.plot(heights, weights, 'k.')

Figure 1: The fields in the Iris dataset and its target

Figure 2: Plotting the weights against heights for a
group of people

60 codemag.comImplementing Machine Learning Using Python and Scikit-learn

The RSS should be as small as possible, with 0 indicat-
ing that the regression line fits the points exactly (rarely
achievable in the real world).

Evaluating the Model Using a Test Dataset
Now that the model is fitted with the training data, you
can put it to the test. You need the following test data-
set:

test data
heights_test = [[1.58], [1.62], [1.69], [1.76],
 [1.82]]
weights_test = [[58], [63], [72], [73], [85]]

You can measure how closely the test data fits the regres-
sion line using the R-Squared method. The R-Squared
method is also known as the coefficient of determination
or the coefficient of multiple determinations for multiple
regressions.

The formula for calculating R-Squared is shown in Figure 5.

Using the formula shown for R-Squared, you can calculate
R-Squared in Python using the following code snippet:

total sum of squares
weights_test_mean =
 np.mean(np.ravel(weights_test))
ss_total = np.sum((np.ravel(weights_test) –
 weights_test_mean) ** 2)
print("ss_total: %.2f" % ss_total)

total sum of residuals
ss_res = np.sum((np.ravel(weights_test) -
 np.ravel(model.predict(
 heights_test))) ** 2)
print("ss_res: %.2f" % ss_res)

r_squared
r_squared = 1 - (ss_res / ss_total)
print("R-squared: %.2f" % r_squared)

The previous code snippet yields the following result:

ss_total: 430.80
ss_res: 24.62
R-squared: 0.94

Fortunately, Scikit-learn has the score() function to cal-
culate the R-Squared automatically for you:

using scikit-learn to calculate r-squared
print('R-squared: %.4f' %

weights = [[60], [65], [72.3], [75], [80]]

plt.title('Weights plotted against heights')
plt.xlabel('Heights in metres')
plt.ylabel('Weights in kilograms')

plt.plot(heights, weights, 'k.')

plt.axis([1.5, 1.85, 50, 90])
plt.grid(True)

plot the regression line
plt.plot(heights, model.predict(heights),
 color='r')

Figure 3 shows the linear regression line.

Examining the Performance of the Model by
Calculating the Residual Sum of Squares
To know whether your linear regression line is well fitted
to all the data points, use the Residual Sum of Squares
(RSS) method. Figure 4 shows how the RSS is calculated.

The following code snippet shows how the RSS is calcu-
lated in Python:

import numpy as np

print('Residual sum of squares: %.2f' %
 np.sum((weights - model.predict(heights))
 ** 2))
Residual sum of squares: 5.34

Figure 3: Plotting the linear regression line

The explanation for deriving
the formula for R-Squared
is beyond the scope of this
article, but you can visit
https://en.wikipedia.org/wiki/
Coefficient_of_determination
for more details.

Figure 4: Calculating the Residual Sum of Squares for
Linear Regression

Figure 5: The formula for
calculating R-Squared

61codemag.com Implementing Machine Learning Using Python and Scikit-learn

check to see if the colummns are removed
print(df.head())

You should now see the dataset shown in Listing 1.

Because the dataset also contains rows with missing
data, let’s drop them and re-index the data frame:

df = df.dropna() # drop all rows
 # with NaN
df = df.reset_index(drop=True) # re-index the
 # dataframe
print(df.head(10))

Encoding the Non-Numeric Fields
In order to perform logistic regression in Python, Scikit-
learn needs the features to be encoded in numeric values.
Examining the dataset, you’ll see that values of Sex and
Embarked are string types, and need to be encoded before
you can go any further. For this purpose, you can use the
LabelEncoder class to perform the conversion, like this:

initialize label encoder
label_encoder = preprocessing.LabelEncoder()

convert Sex and Embarked features to numeric
sex_encoded =
 label_encoder.fit_transform(df["Sex"])
print(sex_encoded)
0 = female
1 = male
df['Sex'] = sex_encoded

embarked_encoded = label_encoder.fit_transform(df["Embarked"])
print(embarked_encoded)
0 = C
1 = Q
2 = S
df['Embarked'] = embarked_encoded

print(df.head())

The last statement in the above code snippet prints out
the output shown in Listing 2.

Note that the values for the Sex and Embarked fields are
now replaced with the encoded values.

 model.score(heights_test,
 weights_test))

R-squared: 0.9429

A R-Squared value of 94% indicates a pretty good fit for
your test data.

Solving Classification Problems
Using Logistic Regression
In the previous section, you saw how linear regression
works in Scikit-learn. Starting with linear regression is a
good way to understand how machine learning works in
Python. In this section, you’re going to solve the Titanic
prediction problem using another machine learning algo-
rithm: Logistic Regression. This is the same problem that
I solved in my previous article using the Microsoft Azure
Machine Learning Studio (MAML). Logistic Regression is
a type of classification algorithm that involves predicting
the outcome of an event, such as whether a passenger
will survive the Titanic disaster or not.

Getting the Titanic Dataset
You can get the Titanic dataset by going to https://www.
kaggle.com/c/titanic/data. Once you’ve obtained it, you
can load it into a Pandas DataFrame:

import pandas as pd
from sklearn import linear_model
from sklearn import preprocessing

read the data
df = pd.read_csv("titanic_train.csv")
print(df.head())

It’s my habit to print out the data frame at every point
of the process to verify that the data is properly loaded
(or cleaned, as you’ll see in the next couple of sections).

Cleaning the Data
Once the data is loaded, it’s time to clean the data.
Among all the different fields in the Titanic dataset,
there are a number of columns that aren’t important in
building the machine learning model. For this purpose,
let’s drop the columns using the following code snippets:

drop the columns that are not useful to us
df = df.drop('PassengerId', axis=1)
axis=1 means column

df = df.drop('Name', axis=1)
df = df.drop('Ticket', axis=1)
df = df.drop('Cabin', axis=1)

If you need a refresher
on the Titanic problem,
be sure to check out my article
on machine learning in
the Sep/Oct 2017 issue of
CODE Magazine.

 Survived Pclass Sex Age SibSp Parch Fare Embarked
0 0 3 male 22.0 1 0 7.2500 S
1 1 1 female 38.0 1 0 71.2833 C
2 1 3 female 26.0 0 0 7.9250 S
3 1 1 female 35.0 1 0 53.1000 S
4 0 3 male 35.0 0 0 8.0500 S

Listing 1: The output of the dataset after dropping some columns

 Survived Pclass Sex Age SibSp Parch Fare Embarked
0 0 3 1 22.0 1 0 7.2500 2
1 1 1 0 38.0 1 0 71.2833 0
2 1 3 0 26.0 0 0 7.9250 2
3 1 1 0 35.0 1 0 53.1000 2
4 0 3 1 35.0 0 0 8.0500 2

Listing 2: The values for the Sex and Embarked fields are now replaced with the encoded values

62 codemag.comImplementing Machine Learning Using Python and Scikit-learn

Training set
print(train_features.head())
print(train_label)

The stratify argument lets you specify a target variable
to spread evenly across the train and test splits.

Figure 6 summarizes how the dataset has been split.

You can now examine the training set and its associated
label:

 Pclass Sex Age SibSp Parch Fare
514 3 1 21.0 0 0 8.4333
382 3 1 9.0 5 2 46.9000
285 1 0 22.0 0 1 55.0000
142 2 1 30.0 0 0 13.0000
671 3 1 34.5 0 0 6.4375

Embarked
2
2
2
2
0

[0, 0, 1, 0, 0, ..., 0, 1, 1, 0, 0]
Length: 534
Categories (2, int64): [0, 1]

Likewise, examine the test set:

Test set for validation
print(test_features.head())
print(test_label)

Observe that the training set has 534 rows and the test
set has 178 rows, which is split in the ratio of 3:1:

 Pclass Sex Age SibSp Parch Fare
227 3 1 19.0 0 0 8.0500
318 2 1 46.0 0 0 26.0000
538 3 1 20.0 0 0 9.2250
199 1 1 37.0 1 1 52.5542
235 2 1 36.0 0 0 12.8750

Embarked

Making Fields Categorical
The next types of values that you need to take care of
in the dataset is that of categorical values. Categorical
types can only take on a limited, fixed number of possible
values. Categorical values indicate to Scikit-learn that
for this type of fields, numerical operations are not pos-
sible. A good example of a categorical field is Survived,
where the value can only be 0 or 1 (and not anywhere
in-between).

To make a field categorical, use the Categorical class in
Pandas:

make fields categorical
df["Pclass"] = pd.Categorical(df["Pclass"])
df["Sex"] = pd.Categorical(df["Sex"])
df["Embarked"] = pd.Categorical(df["Embarked"])
df["Survived"] = pd.Categorical(df["Survived"])

print(df.dtypes) # examine the datatypes
 # for each feature

The above prints out the data types for each field, con-
firming that the specified four fields are converted to
category:

Survived category
Pclass category
Sex category
Age float64
SibSp int64
Parch int64
Fare float64
Embarked category
dtype: object

Splitting the Dataset into Train and Test Sets
With the dataset cleaned, you’re now ready to split the
dataset into two distinct sets: one for training and one
for testing. But before that, you need to separate the
dataset into two data frames: one containing all the fea-
tures and one for the label:

we use all columns except Survived as
features for training
features = df.drop('Survived',1)

the label is Survived
label = df['Survived']

In Python, to split the rows for training and testing, you
can use the train_test_split() function from the model_
selection module:

from sklearn.model_selection
 import train_test_split

split the dataset into train and test sets
train_features,test_features,
train_label,test_label =
 train_test_split(
 features,
 label,
 test_size = 0.25, # split ratio
 random_state = 1, # Set random seed
 stratify = df["Survived"])

Figure 6: Splitting the dataset into training and testing sets

63codemag.com Implementing Machine Learning Using Python and Scikit-learn

Estimators

The sklearn.linear_model.
LinearRegression class is an
estimator. Estimators predict
a value based on the observed
data.

In Scikit-learn, all estimators
implement the fit() and
predict() methods.

 [0.84255956 0.15744044]
 ...
 [0.34218839 0.65781161]
 [0.72572388 0.27427612]
 [0.39219784 0.60780216]]

Displaying the Metrics
Using the predictions and the test_label, you can gen-
erate a confusion matrix using the crosstab() function:

Generate table of predictions vs actual
print(pd.crosstab(preds, test_label))

The confusion matrix looks like this:

col_0 0 1
row_0
0 92 24
1 14 48

The accuracy of the prediction is (92+48) / (92+48+14+24)
= 0.7865168. The LogisticRegression object also comes
with the score() function to return the accuracy of the
predictions:

get the accuracy of the prediction
log_regress.score(X = test_features ,
 y = test_label)
0.7865168539325843

The result above matches the result that you calculated
manually.

Apart from using the crosstab() function to generate the
confusion matrix, you can use the confusion_matrix()
function from the metrics module in Scikit-learn:

from sklearn import metrics

view the confusion matrix
metrics.confusion_matrix(
 y_true = test_label, # True labels
 y_pred = preds) # Predicted labels

The confusion matrix is contained within an array:

array([[92, 14],
 [24, 48]])

The metrics module also allows you to generate the other
metrics such as precision, recall, and f1-score:

View summary of common classification metrics
print(metrics.classification_report(
 y_true = test_label,
 y_pred = preds))

The output looks like this:

 precision recall f1-score support

 0 0.79 0.87 0.83 106
 1 0.77 0.67 0.72 72

avg / total
 0.79 0.79 0.78 178

2
2
2
2
0

[1, 0, 0, 1, 0, ..., 0, 0, 1, 1, 0]
Length: 178
Categories (2, int64): [0, 1]

Training the Model
You can now go ahead and train the model. For this, use
the LogisticRegression class. Train the model using the
train_features against the train_label:

initialize logistic regression model
log_regress = linear_model.LogisticRegression()

Train the model
log_regress.fit(X = train_features ,
 y = train_label)

Once the model is fitted with the data (trained), you can
check its intercept and coefficients:

Check trained model intercept
print(log_regress.intercept_)

Check trained model coefficients
print(log_regress.coef_)

The output should look something like this:

[3.87427541]
[[-0.85532931 -2.30146604 -0.03444764
 -0.29622236 -0.00644779 0.00482113
 -0.01987031]]

Making Predictions
With the model trained, you can make predictions using
the test set. You use the predict() function and pass in
the test_features set:

Make predictions
preds = log_regress.predict(X=test_features)
print(preds)

The predictions are in the form of 0s (did not survive) and
1s (for survived):

[0 0 0 ... 1 0 1]

It’s useful (as you’ll see later when you plot the ROC
curve) that you also get the probabilities of the predic-
tion. To do that, use the predict_proba() function:

Predict the probablities
pred_probs =
 log_regress.predict_proba(X=test_features)
print(pred_probs)

The result is in the form of [Death Probability, Survival
Probability]:

[[0.83870368 0.16129632]
 [0.83710341 0.16289659]

64 codemag.comImplementing Machine Learning Using Python and Scikit-learn

load the titanic training set
training.data.raw <- read.csv('Titanic_train.csv’,
 header=T,
 na.strings=c(""))
print(head(training.data.raw))

#---#

print number of rows
print(c("Number of rows: ", nrow(training.data.raw)))

#---#

examine which are the columns with NA values
sapply(training.data.raw, function(x) sum(is.na(x)))

 # the sapply() function applies the function
 # passed as argument to each column of the dataframe

#---#

get the number of unique values for each column
sapply(training.data.raw, function(x) length(unique(x)))

#---#

we are only interested in the following features -
Survived (2), Pclass(3), Sex(5), Age(6), SibSp(7),
Parch(8), Fare(10), Embarked(12)
data <- subset(training.data.raw, select=c(2,3,5,6,7,8,10,12))
print(head(data))

#---#

omit the rows with empty values
data <- na.omit(data)

OR, fill the empty values for age with the average age
data$Age[is.na(data$Age)] <- mean(data$Age, na.rm=T)
na.rm=T means NA values should be stripped before computation

print(data)

#---#

remove all rows with Embarked empty
data <- data[!is.na(data$Embarked),]

check if there are NaN in data
sapply(data, function(x) sum(is.na(x)))

check the length of unique values for each column
sapply(data, function(x) length(unique(x)))

#---#

check if Sex, Pclass, and Embarked are categorical values
is.factor(data$Sex) # read.csv() by default will
 # encode the string variables as factors
is.factor(data$Embarked) # read.csv() by default will encode the
 # string variables as factors
is.factor(data$Pclass)
is.factor(data$Survived)

#---#

data$Pclass <- factor(data$Pclass) # make Pclass a catagorical

 # value
data$Survived <- factor(data$Survived) # make Survied a categorical
 # value

is.factor(data$Pclass)
is.factor(data$Survived)

print(head(data))

#---#

get the number of rows in data
n <- nrow(data)

data.shuffled <- data[sample(n),] # shuffle the data
print(head(data.shuffled))

train.indices <- 1:round(0.75 * n) # indices for the first
 # 75% of the rows
train <- data.shuffled[train.indices,] # get the first 75% of
 # the rows

train.indices <- (round(0.75 * n) + 1):n # indices for the
 # remaining 25% of the
 # rows
test <- data.shuffled[train.indices,] # get the remaining 25%
 # of the rows

print(nrow(train))
print(nrow(test))

#---#

create a glm() instance - Generalized Linear Models
model <- glm(Survived ~ ., # Survived is the
 # label and
 family=binomial(link=’logit’), # features are the
 # rest of
 data=train) # the data column
summary(model)

#---#

make predictions
pred.results <- predict(model, # don’t pass in the Survived (1)
 # column
 newdata=subset(
 test,
 select=c(2,3,4,5,6,7,8)),
 type=’response’)

pred.results <- ifelse(pred.results > 0.5,1,0) # if value>0.5
 # assign 1 else 0
print(pred.results)

#---#

find all the ones where prediction
is correct and calculate the mean
accuracy <- mean(pred.results == test$Survived)
print(paste('Accuracy’,accuracy))

#---#

installing the ROCR package
run this only once
install.packages('ROCR’, repos=’http://cran.us.r-project.org’)

Listing 3: Logistic Regression using R for the Titanic Dataset

65codemag.com Implementing Machine Learning Using Python and Scikit-learn

R-Squared

R-squared is always between 0
and 100%: If it’s 0%, that indicates
that the model explains none
of the variability of the response
data around its mean. If it’s 100%,
that indicates that the model
explains all the variability of the
response data around its mean.

 # rate of predictions with score >=
 # thresholds[i].

print(thresholds)

For the R programmer, I’ve listed the solution for the Ti-
tanic problem written in R, as shown in Listing 3.

Summary
In this article, you’ve learned how to implement machine
learning using Python and the Scikit-learn library. In
particular, you’ve used the LinearRegression and Logis-
ticRegression classes to solve regression and classifica-
tion problems, respectively. In addition, the solution for
the Titanic problem is also presented in R.

Displaying the Receiver Operating
Characteristic (ROC) Curve
Another metric that’s very useful to determine wheth-
er your model is well fitted is the Receiver Operating
Characteristic (ROC) curve. The metrics module has the
roc_curve() function that helps you to generate a ROC
curve, as well as the auc() function that calculates the
area under the ROC curve.

The following code snippet plots the ROC curve and dis-
plays the AUC (Area Under Curve) (see Figure 7):

from sklearn.metrics import roc_curve, auc
import matplotlib.pyplot as plt

convert the probabilities from ndarray to
dataframe
df_prob = pd.DataFrame(
 pred_probs,
 columns=['Death', 'Survived'])

fpr, tpr, thresholds = roc_curve(
 test_label, df_prob['Survived'])

find the area under the curve (auc) for the
ROC
roc_auc = auc(fpr, tpr)

plt.title(
 'Receiver Operating Characteristic Curve')
plt.plot(fpr, tpr, 'black',
 label='AUC = %0.2f'% roc_auc)

plt.legend(loc='lower right')
plt.plot([0,1],[0,1],'r--')
plt.xlim([-0.1,1.1])
plt.ylim([-0.1,1.1])

plt.ylabel('True Positive Rate (TPR)')
plt.xlabel('False Positive Rate (FPR)')
plt.show()

print(fpr) # Increasing false positive rates such
 # that element i is the false positive
 # rate of predictions with score >=
 # thresholds[i].
print(tpr) # Increasing true positive rates such
 # that element i is the true positive

library(ROCR)

make predictions
p <- predict(model, newdata=subset(
 test,select=c(2,3,4,5,6,7,8)), type="response")
print(p)

transform the input data into a standardized format
needed by ROCR
pr <- prediction(p, test$Survived)

perform all kinds of predictor evaluations
prf <- performance(pr, measure = "tpr", x.measure = "fpr")
plot(prf)

auc <- performance(pr, measure = "auc")
auc <- auc@y.values[[1]]
auc

#---#

installing the caret package
run this only once
install.packages('caret’, dependencies = TRUE)
library(caret)

p <- ifelse(p > 0.5,1,0)

print the confusion matrix
confusionMatrix(p, test$Survived)

Listing 3: continued

Figure 7: Plotting the ROC curve and displaying the AUC

 Wei-Meng Lee

66 codemag.comSoftware Archaeology

ONLINE QUICK ID 1711121

Software Archaeology
As developers, we’re sometimes presented with the potentially unpleasant task of returning to really old code (or worse, as
consultants, visiting it for the very first time). In this article, I take a look at a few projects and discuss some of the techniques
used to get up and running quickly.

Excavating Old Code
I started writing code as a student/hobbyist in 1980, and
professionally in 1990. For a lot of my career, the notion
of working on old code was a relative one. If I work on
something else for three months and then come back to
it, that’s old, right? I knew there were mainframe sys-
tems out there that were older than I was, but I hadn’t
seen any first hand.

My professional start centered on Visual Basic 3.0, and
eventually HTML, JavaScript, and Classic ASP. Web tech-
nology was new, and changing so fast back then, that the
concept of old code wasn’t even on our radar.

In the early 2000s, Microsoft simultaneously announced
the impending demise of “Classic” VB and heralded the
arrival of VB.NET and C#. I jumped on that bandwagon,
luckily dodging the “old code” bullet, because at that
time, there was no legacy .NET code. Now, here we are
and .NET is 15 years old. There’s old code everywhere
you look. In fact, .NET itself is now so bogged down with
legacy junk that Microsoft is effectively starting over
(again) with .NET Core.

One Piece at a Time
There’s a great Johnny Cash song about a factory worker
who builds Cadillac cars. He really wants one of his own,
but can’t afford it, so he smuggles out one part every
week for years. When it finally comes time to assemble
the car, unsurprisingly, none of the parts fit together
quite right.

That car was this project I’m about to exhume. Sure, it
worked—mostly—but maintenance was a nightmare.

This relatively small ASP.NET Web project had been
around for a few years and had been touched by A LOT of
different people. You could practically see each person’s
distinct fingerprints, in the form of coding style and ar-
chitectural choices.

By the time I inherited it, there were at least four differ-
ent ways of doing CRUD operations in the code. One guy
was a big believer in Stored Procedures and another pre-
ferred inline SQL. Another person wanted everything in a
data layer that he wrote himself, and another preferred
using Enterprise Library.

Depending on your task, you may not have time to fix
everything else you find that’s horribly, horribly wrong,
no matter how much you may want to.

' Case In Point:

If Not IsNothing(obj) = False Then
 ...

End If

If you’re hunting down an issue, sometimes you have to
break stuff (temporarily) in order to fix other stuff. If you
aren’t sure what something does, turn it off (comment it
out) and see what breaks. If you royally screw something
up and can’t find your way back, there’s always source
control.

I’m making an assumption here, so if you don’t have
source control, stop what you’re doing and get the proj-
ect into source control NOW, or make a backup or what-
ever you have to do. If you’re laughing, I’m assuming it’s
because you’re already painfully aware of how often this
happens in the real world.

If you’re not there to fix a bug, it stands to reason that
you must be trying to add something new. The existing ar-
chitecture may make adding new things a painful process.

“Bolt-On Features” are often regarded as a bad, but
sometimes they’re an unavoidable necessity in this line
of work. In a legacy application like this one (containing
an architectural mish-mash), there’s no single right ap-
proach aside from a total rewrite. Your best bet is to go
with the style that most closely matches your own, or fol-
low the architectural choices that you’re most comfort-
able with. If you’re lucky, this will be the newest tech,
but don’t count on it.

There are times when it’s ok to show off your individual-
ity and brilliance, but this probably isn’t one of them.
Adding more chaos to the pile could introduce unfore-
seen issues, make it harder for you to maintain later, and
almost certainly make it harder for the next person to
come along. As they say, “When in Rome, do as the Ro-
mans do.”

Chris G. Williams
chrisgwilliams@gmail.com
www.geekswithblogs.net/cwilliams
@chrisgwilliams

Chris G. Williams is a Senior
Developer for Fluor Government
Group, a nine-year multiple
Microsoft MVP awardee
(VB, XNA/DirectX, Windows
Phone) and the author of
Professional Windows Phone
Game Development.

He has authored numerous
articles on a variety of
technologies, led a 14-city
speaking tour, and has a
series of mobile development
webinars produced through
DevExpress.com.

Chris is a regular presenter
at conferences, code camps,
and user groups around
the country. He blogs at
GeeksWithBlogs (.net) and
also manages the MonoGame
Indie Devs technical
community on Facebook.

In fact, .NET itself is now
so bogged down with
legacy junk that Microsoft
is effectively starting over
(again) with .NET Core. Depending on your task,

you may not have time to
fix everything else you find
that’s horribly, horribly wrong,
no matter how much you
may want to.

67codemag.com Software Archaeology

68 codemag.comSoftware Archaeology

Function ComplexMethod() As Integer
 ' ...
 ' 380 lines of complex code
 ' ...
End Function

If you aren’t familiar with it, this attribute essentially
tells the debugger “everything is fine here, nothing to
see, move along” and as a result, even if you’re step-
ping into all of your methods line by line with F11, this
behaves as though you hit F10 and simply executes the
code without stepping into it.

You Want Me to Do What?
In this last example, I’d acquired responsibility for a col-
lection of Microsoft Access 2010 forms applications. Like
many Access apps, in addition to being really old code,
they were initially written by a non-developer, passed
through a few hands, and then into mine. To make mat-
ters worse, parts of the code were written in Albanian,
which was definitely not listed on my resume. I also
hadn’t even installed Access on my developer computer
in probably 10 years or more.

When I opened the first one, I had no idea what the app
was supposed to do, how it worked, or what any of the
numerous buttons did. So my first step was to insert
breakpoints on every single method that served as an
event handler and start clicking buttons so I could map
everything out.

After I had a pretty good idea of what the buttons
mapped to, the next step was to really dig into the meat
of the code. In this example, I wasn’t there to add new
features to any of the apps, but simply to get them work-
ing in a new environment. It turns out, that while dig-
ging through the code, I discovered there was a lot of
stuff that never worked in the first place (buttons that
led to nowhere, lack of null-checking on various controls,
incomplete methods, etc.).

I made a list of everything I found: environmental stuff
(like hardcoded user IDs and network paths), broken
stuff, unfinished or orphaned stuff, performance issues,
etc. Once the list was done, the team prioritized what to
address first, what to research further, and what to defer
“indefinitely.”

While exploring, I kept running into features that were
restricted by user ID. Each of these features (there were
many) had a hard-coded list of IDs in an If statement
that wrapped all the code in the function. Instead of
adding my ID to each list, which would have been time
consuming and temporary, I put a breakpoint on each If

My first step was to insert
breakpoints on every single
method that served as an
event handler and start
clicking buttons so I could
map everything out.

Digging Deep
The next project I’m going to discuss is one of my own.
I’ve been working on a small RPG game (called “Heroic
Adventure!” or “HA!” for short) since 2003, off and on. I
have periodic bursts of productivity, punctuated by years
of inactivity.

Every time I revisit it after a long break, I realize just
how much I’ve learned since the last time. Unfortunately,
that means I start getting distracted by all the things I
want to fix or refactor, instead of focusing on the reason
I’m back in the code in the first place. Unless it’s your
intended goal, you must avoid the temptation to refactor
just because you know a better way now.

A few months ago, I came back to the code after about
two years away from it. There were some known bugs I
wanted to fix, and some new features I wanted to add.
Unfortunately, I hadn’t written production VB.NET in
quite some time, having been working mostly in C#, and
the fact that this project was started in VB.NET 1.1, and
upgraded to 2.0 (years ago) didn’t help.

Half of the things I tried didn’t exist in .NET 2.0, so I
had to upgrade the project to 4.x. Fortunately, it didn’t
break anything (nor should it have), but that can and
does happen.

I also spent a lot of time stepping through code in an
effort to remember how it worked, or why I wrote it that
way. A lot of people don’t realize that F5 and Ctrl-F5 (de-
bug and run without debugging, respectively) are not
your only options for starting your code. You can also
use F10 and F11 (step over and step into, respectively)
which are especially handy if you aren’t sure where ex-
actly where in the codebase your application begins.

One thing I don’t recommend is excessive use of the <De-
buggerStepThrough()> attribute. It’s OK for relatively
short methods that you have to step through often,
but there are few things more frustrating than stepping
through code you barely remember (or have never seen)
and bouncing off of one of these. You’ll likely find your-
self wanting to rip out every instance you find. If not,
anyone who comes after you almost certainly will.

' Case In Point

' This is ok:
<DebuggerStepThrough()>
Function SimpleMethod() As Integer
 Return RND.Next(1, cap)
End Function

' This is not ok:
<DebuggerStepThrough()>

Unless it’s your intended
goal, you must avoid
the temptation to refactor
just because you know a
better way now.

69Title articlecodemag.com

statement and then dragged the execution point into the
“True” branch, bypassing the security and allowing me to
continue on my way.

' Case In Point

Private Sub cmdDoStuff_Click()
 If (ID = "uuuuu"
 Or ID = "vvvvv"
 Or ID = "wwwww"
 Or ID = "yyyyy"
 Or ID = "zzzzz") Then
 DoCmd.OpenForm "frmDoStuff", 0
 Else
 MsgBox "Access denied."
 End If
End Sub

Incidentally, Google Translate did a pretty decent job on
the Albanian (except for the ones that were further sub-
jected to Hungarian Notation), but it still took me a bit
to wrap my head around some of the variable and func-
tion names.

Wrapping Up
Hopefully, you’ve found some useful tips in this article
and you can make use of some or all of them the next
time you have to dive into some old or unfamiliar code,
or better yet, may you never get stuck working on some-
one else’s old code. Good luck.

 Chris G. Williams

Controlling the Flow
of Execution

In most Microsoft debuggers,
you can move the execution
point to set the next statement
of code to be executed.

Look for a yellow arrow in the
margin. This marks the location
of the next statement to be
executed. By dragging the arrow,
you can skip over a portion of
code or return to a line previously
executed.

70 codemag.comDoes Anybody Really Know What Time It Is: Dates and Times across Time Zones

ONLINE QUICK ID 1711101

Does Anybody Really Know What
Time It Is: Dates and Times across
Time Zones
The majority of the projects I’ve worked on in my career existed in a single time zone and used on-premises hardware. But how
we handle systems that span time zones has changed and continues to change, and dealing with those changes is not always
intuitive. As the cloud becomes more pervasive,

it’s becoming increasingly likely that, even if your client
remains in only in a single time zone, their databases,
services, and UIs may live in different time zones. And
who knows, maybe someday your customer will expand
or move. That’s why I advocate building all new systems
with the capability to handle multiple time zones.

In the past, not only did we not have a good way to han-
dle multiple time zones, but each of the tools we used to
build our systems had different support for dates, times,
and time zones. In order to come up with a good solu-
tion, we often had to create multiple columns in our da-
tabases and multiple properties on our classes and keep
them all in sync ourselves. A lot of developers wrote cus-
tom code to handle it and in some cases, we still have to
do that today. But if you’re a Microsoft stack developer,
there are now pretty good ways to deal with this type of
data built right into the tools.

The DateTimeOffset data type was originally introduced
way back in .NET 2.0 at the end of 2005. Like its sib-
ling the DateTime data type, it could store a date and/
or time, but it added a third component, called the off-
set, which defaults to the current offset of the local time
zone from Coordinated Universal Time (UTC it’s not CUT
because the acronym comes from the French language).
For example, I live in Houston where the offset during
Daylight Savings Time is -5 hours. That is, it’s five hours
earlier in Houston than UTC. UTC, sometimes referred to
as Zulu because it’s denoted with a “Z” next to the offset
when written out, is a more precise standard than Green-
wich Mean Time (GMT), which is the official time at the
Royal Observatory in Greenwich, England. For the most
part, you can think of UTC, Zulu, and GMT as basically the
same thing. So when I say it’s 1:41PM -5 here in Houston,
it’s the same as saying it’s 6:41PM -0 UTC or 4:41AM +10
tomorrow morning in Canberra. When my services and
database are in Azure (which uses the UTC time zone re-
gardless of the data center’s physical location) and time-
stamps something as 6:41PM (-0), I can see that that
timestamp happened at 1:41PM local time (-5).

If you stored your data in SQL Server as many of us
did, you had to wait three more years until SQL Serv-
er 2008 was released before you could write your .NET
DateTimeOffset value into the database. Prior to that,
you had to use one column to store the date and time
and another to store the offset, and, if you were good,
you knew enough to make sure your time offset column

included decimal places so you could save offsets that
weren’t whole hours such as the +5:45 offset (5.75) used
in parts of Europe and Africa. Most modern databases
and programming languages support DateTimeOffset
data types or an equivalent, so your best bet when writ-
ing a new system is to use DateTimeOffsets everywhere.
When you do so, you record a moment in time that works
across all time zones.

If it were only that easy! Although this strategy works
for most scenarios, there are some interesting twists to
be aware of.

If You Only Want to Store a Date
Although SQL Server also introduced data types that
stored only a Date or only a Time in 2008, there are no
matching data types in .NET. I’ve often felt this was an
oversight. A mistake that many people make when stor-
ing only a date is using the DateTime type.

It’s a mistake for several reasons: It’s an especially dan-
gerous situation because there’s a quirk that only rears
its head sometimes: when the time offset is great enough
to change the time enough to cross midnight, which
changes the date. In my scenario here in Houston, if I
send my birthday as a DateTime of 9/29/1964 00:00:00
(midnight) to a service in Azure, it *might* subtract five
hours (six in winter) and show up as 9/28/1964 mak-
ing me a day older than I actually am! If I unintention-
ally send the current time along with the date, this bug
shows up at different times of the day than in the cases
where I’m careful to send the value as midnight.

Kind or Unkind?
You might be wondering why I said *might* subtract five
hours (six in winter). That’s an excellent question and one
that baffled me for a while until I dug deep into the docu-
mentation of the .NET DateTime data type. The culprit is
the Kind property, which was added to the DataTime struc-
ture in .NET 3.0. Kind is an enum that can be one of three
values: Unspecified, Local, or UTC. The behavior we all
seem to expect is when this property is set to the default
value of DateTimeKind.Unspecified, which basically says to
ignore any concept of an offset. If I specify 9/29/1964
00:00:00 in Houston and send it to Azure which is us-
ing UTC anywhere else in the world, the value is read as
9/29/1964 00:00:00. The documentation also says that

Mike Yeager
www.internet.com

Mike is the CEO of EPS’s Houston
office and a skilled .NET devel-
oper. Mike excels at evaluating
business requirements and
turning them into results from
development teams. He’s been
the Project Lead on many
projects at EPS and promotes
the use of modern best
practices, such as the Agile
development paradigm, use of
design patterns, and test-drive
and test-first development.
Before coming to EPS, Mike was
a business owner developing a
high-profile software business
in the leisure industry. He grew
the business from two employees
to over 30 before selling
the company and looking for
new challenges. Implementation
experience includes .NET, SQL
Server, Windows Azure, Micro-
soft Surface, and Visual FoxPro.

71Title articlecodemag.com

72 codemag.comDoes Anybody Really Know What Time It Is: Dates and Times across Time Zones

A Word about Time Zones
Time zones and offsets are not the same thing. One prob-
lem that DateTimeOffsets don’t solve is storing the origi-
nating time zone. Knowing the offset isn’t enough to tell
you which time zone it came from. For instance, Arizona
doesn’t observe Daylight Savings Time, so in summer it’s
the same time in California as it is in Arizona, but in the
winter, it’s not. Also, there are plenty of instances where
time zones overlap. If you need to store data with time
zones or convert DateTimeOffsets to a particular time
zone, see .NET’s TimeZoneInformation class, introduced
in version 3.5.

An Unusual Cases
There will always be a few cases that don’t fit the mold.
For example, I recently worked with a client who sched-
uled appointments for their customers. To them, a 10AM
appointment on July 1 should show up as a 10:00 AM
appointment on July 1, no matter which time zone it’s
viewed in. If an associate in a branch in London looks at a
schedule for a branch in Los Angeles, they don’t want to
see that appointment showing up as 2AM (which is what
time it would actually take place). In cases like this, it’s
best to store a DateTimeOffset along with TimeZoneInfo,
and use the DateTimeOffset.ToOffset() method to get
whichever version of the appointment time is required
for the situation. Alternately, you could use a DateTime
and ensure that the Kind property is set to Unspecified.
This has the disadvantage of never knowing exactly when
something actually happened. In this scenario, you’ll just
never know exactly when a 5PM appointment starts, but
hey, it’s 5 o’clock somewhere!

Summary
I hope this has cleared up at least few questions for you
and maybe even got you thinking a bit! Dates and times
are intuitive, but actually quite difficult. Time zones, day-
light savings time, leap years, leap seconds, and even
different calendars all come in to play. Fortunately, .NET
gives us a pretty good arsenal of tools to work with to
handle the various situations. My wish list includes add-
ing Date and Time data types to .NET and introducing a
DateTime-like type that ignores offsets so that it works
consistently. I don’t think it’s going to happen, but I’ll
give it some time.

you can use the DateTime.SpecifyKind() method to set this
value. If you specified to use local time or UTC time, you
can do that to and know what to expect.

What the documentation doesn’t clearly specify is that
some properties and methods on the DateTime type set
the Kind property FOR YOU. You can only find that docu-
mented in those methods. For example, if I wrote this
bit of code:

var n = DateTime.Today;

You see that the Kind property is set to Local, but if I run
this code:

var n = new DateTime(n.Year, n.Month, n.Day);

You see that the Kind property is set to Unspecified.

In the debugger, these DateTime values look identical
except for the Kind property which few people know to
check. If I send both of these values from my app run-
ning in Houston to a service in Azure to be stored in a
database, I *might* get different results when I ask for
the data back. The value in the first example will likely be
adjusted by -5 hours. If I store the value in the database
in a DateTime column, then it will be five hours off and if
I store it in a Date column, it will be stored as yesterday.

Why? What’s the difference between these two examples?
When you use things like DateTime.Now or DateTime.To-
day, the Kind property is set to Local to indicate that
it was set from the computer’s local clock. However,
when you create a DateTime with explicit values for
year, month, and day, the local clock isn’t used (n.Year,
n.Month, and n.Day are just integers in this context) and
the Kind property is set to Unspecified.

The bottom line is, use DateTimeOffsets when you can.
They save a lot of headaches, even if you don’t care about
the offset. Alternatively, you can create your own .NET
type to wrap a DateTime so that the Kind property is al-
ways set to Unspecified whenever a value is set. Although
that smells a bit like a hack, it works and you may be
stuck with it on some projects.

If You Only Want to Store a Time
As a .NET developer, you have a couple of choices. The
TimeSpan class is very handy for manipulating hours,
minutes, seconds, or ticks, and it maps relatively well to
SQL Server’s Time data type. Alternately, you can store
the hours, minutes, or seconds since midnight in an int
in both .NET and SQL Server or, if you need more preci-
sion, you can store ticks since midnight as a four-byte
integer (a long in .NET and a bigint in SQL Server).

What the documentation
doesn’t clearly specify is that
some properties and methods
on the DateTime type set
the Kind property FOR YOU.

 Mike Yeager

73codemag.com Managed Coder

Nov/Dec 2017
Volume 18 Issue 6

Group Publisher
Markus Egger

Associate Publisher
Rick Strahl

Editor-in-Chief
Rod Paddock

Managing Editor
Ellen Whitney

Content Editor
Melanie Spiller

Writers In This Issue
Kevin S. Goff Vassili Kaplan
Wei-Meng Lee Sahil Malik
Jeff Palermo Ted Neward
John V. Petersen Nic Raboy
Justin Self Paul D. Sheriff
Chris G. Williams Mike Yeager

Technical Reviewers
Markus Egger
Rod Paddock

Art & Layout
King Laurin GmbH
info@raffeiner.bz.it

Production
Franz Wimmer
King Laurin GmbH
39057 St. Michael/Eppan, Italy

Printing
Fry Communications, Inc.
800 West Church Rd.
Mechanicsburg, PA 17055

Advertising Sales
Tammy Ferguson
832-717-4445 ext 26
tammy@codemag.com

Circulation & Distribution
General Circulation: EPS Software Corp.
International Bonded Couriers (IBC)
Newsstand: Ingram Periodicals, Inc.
 Media Solutions

Subscriptions
Subscription Manager
Colleen Cade
ccade@codemag.com

US subscriptions are US $29.99 for one year. Subscriptions
outside the US are US $44.99. Payments should be made
in US dollars drawn on a US bank. American Express,
MasterCard, Visa, and Discover credit cards accepted.
Bill me option is available only for US subscriptions.
Back issues are available. For subscription information,
e-mail subscriptions@codemag.com.

Subscribe online at
www.codemag.com

CODE Developer Magazine
6605 Cypresswood Drive, Ste 300, Spring, Texas 77379
Phone: 832-717-4445
Fax: 832-717-4460

CODE COMPILERS

 Ted Neward

(Continued from 74)

a whole (such as our highly broken interview
processes). Ditto for this column. My Twitter
account, being more a reflection of me as a
person, I allow to show my political views on
topics and when I feel strongly on a subject.
My Facebook account, which I keep invite-on-
ly, is generally all-personal-no-professional. I
don’t suggest that this is the “best” way to use
social media; this is simply the plan that I’ve
evolved. You need to make your own plan, so
that you can be clear about where your opin-
ions will go and who they will reach. Which
brings us back around to the other part of
this.

A High Degree of Discipline
Having made that clear delineation in your
head, the software development professional
now faces a truly hard task: sticking to that
plan. This is where a high degree of discipline
is required: You must stick to your plan, reli-
giously, despite the myriad opportunities that
exist to bring the “wisdom” of your words to
the masses around you through the various
channels open to you. Stick to your plan. Bring
that wisdom only through the channels that
won’t impede your professionalism.

Without rendering judgment on the Google
employee’s remarks, we can still discover how
he failed in his professional duties. As near as
we can tell, his opinions were written at work
using work resources and time, meaning they
were essentially a work product; once they be-
came detrimental to the company’s health, he
crossed over into the realm of “poor judgment.”
This is no different than if he were to use his
work resources to write an opinion piece about
how his employer’s competitors engage in slave
labor or outright intellectual property theft;
the actual subject is irrelevant to the discus-
sion. Although some people might debate that
this is an issue of “free speech,” the larger
point is that he put his employer into an un-
comfortable position, and one which garnered
some extremely bad press. Satya Nadella made
a similar mistake in the early days of his tenure
at Microsoft. One of these two individuals im-
mediately apologized and sought to right the
wrong, and remains employed to this day; one
of them refused, was terminated, and is cur-
rently suing his former employer.

As software development professionals, if we are
to claim that term, we have to understand that
our professionalism is also built around the per-
ception others have of us as we carry out our du-
ties. I most certainly encourage every software
developer to be as engaged in their political
community of choice as they choose to be, but
understand that there is a clear demarcation be-
tween your personal world and your “profession-
al” one, particularly for those of us who build

a personal brand. If you choose to bring your
personal opinions with you into the workplace,
you also choose to accept the consequences of
doing so. Right or wrong.

codemag.com

I have my own opinions on this subject. What
matters more, however, is what degree you, dear
reader, believe is appropriate. Because that’s
the decision you have to make: If you take a
stand for what you believe in, and state it loud-
ly enough, you may find yourself the target of
people who disagree. This isn’t even a political
discussion: Over a decade ago, I wrote the essay
“Object/Relational Mapping is the Vietnam of
Computer Science,” which gathered a firestorm
of technical debate that still rages to this day.
Those who advocate the use of such tools (like
Entity Framework) blasted me for my ignorance;
those who had suffered the inefficiencies of such
tools sang my praises. I was alternatively vilified
and canonized.

When you share your opinion on a subject, you
run the risk of attracting attention both good
and bad, largely dependent on the degree of
your position and the size of your audience.

Here’s the decision: To what degree will you, as
a software development professional, put your
personal opinion out there onto the Internet?
To refuse to share your thoughts is going to im-
pede your technical progress, to be sure. But to
share your thoughts runs the risk of stepping
into a firestorm of controversy, however large or
small.

But more to the original point, what topics will
you weigh in on? Do you wish to take a stand
on topics outside of the technical arena, or do
you wish to keep your discussions more indus-
try-focused? This is where we come back to the
professionalism question: If the definition of
professionalism is to use “good judgment” and
“polite behavior,” you may find that certain top-
ics inherently work against those two elements.
You need to be absolutely clear in your own mind
where your lines are on this subject, largely so
that you can be fully ready to reap the benefits
and costs of making those choices.

Please note: You don’t need to blanket your
position across all media. Myself, I choose to
have an entirely industry-focused blog, al-
though I do give myself the freedom to weigh
in with strong opinions about the industry as

head finds that his website is being DDoS-at-
tacked by what he’s calling “Social Justice Fas-
cists.” He believes they’re doing it in reaction
to a blog post that he wrote that expresses a
strongly conservative-leaning opinion about
a variety of topics related to the technology
industry’s responsibility around hiring, firing,
conference invites, and so on. As of this writ-
ing, in fact, his four most recent blog posts are
about topics that are more appropriate to a po-
litical magazine than a technical blog.

A few months ago, a Google employee wrote an
informal memo to his coworkers about what he
saw as misguided attempts on Google’s part to
allocate resources (time, energy, and money,
among other things) to a cause that he be-
lieved was inefficient and a waste. His superi-
ors disagreed and terminated his position. He’s
in the process of suing them for wrongful ter-
mination. The industry, meanwhile, exploded
into debate over the topic.

This is not an article about that topic.

In an article that appears in this issue of CODE
magazine, John Petersen talks about the eth-
ics of professional programmer conduct, and
whether or not the software industry should be
regulated. He notes that development is cur-
rently not a “profession” in the same way that
professional engineers (those who build build-
ings and bridges and such) are defined, and
that if we seek to create an organization that
upholds professional standards, we’re asking
for regulation, and that we should be careful
what we ask for. In particular, John notes:

It’s ironic that many software developers re-
fer to themselves as software engineers. …
If you want to hold yourself to a higher stan-
dard, be professional, conduct yourself ac-
cordingly, and be accountable. At the end of
the day, that’s what being a professional is all
about.

The author of the blog posts suffering the
DDoS attacks has historically been the first to
suggest that we as developers need to hold
ourselves to a high standard of professional-
ism, that we should see ourselves as “software
craftsmen.”

There’s a thread here, loosely tied, bringing
these two topics together: Professionalism is a
harder thing to accomplish than we might be-
lieve. It requires a clear decision and a high
degree of discipline.

A Clear Decision
Professionalism is defined by Merriam-Webster
online as “the skill, good judgment, and polite
behavior that is expected from a person who
is trained to do a job well.” (See http://www.
learnersdictionary.com/definition/profession-
alism.) It’s important to note that the second
and third elements in that definition are not
related to the skills but the manner in which
one conducts oneself. “Good judgment” is, of
course, a relative term, but “polite behavior” is
pretty clear in casual use; contrast that with the
traditional archetype of the “arrogant genius”
as embodied by TV heroes such as Dr. Gregory
House, who routinely abuses his coworkers and
staff, yet every episode demonstrates that
he’s “the best damn doctor in this hospital” by
saving people who would’ve died without his
brilliant insights and encyclopedic knowledge
of human affliction. Is House a great doctor?
Maybe. Is he a professional? Certainly not by
the above definition.

Cue to John’s discussion of codes of conduct,
such as those listed and described at software
conferences: “Such codes… are an attempt
to provide an objective standard of conduct.
Put another way, these codes are meant to be
objective yardsticks by which to judge behav-
ior.” The medical and legal professions have,
for decades, established what is and is not
considered to be ethical behavior regarding
the manner with which doctors and lawyers are
allowed to interact with their clients. (House
spends a great deal of each episode fight-
ing with his boss and his staff about working
around those guidelines.) Lacking those ex-
plicit guidelines, however vague or precise,
we’re left with an interesting and important
decision: Given that the Western world per-
mits citizens the right to speak their minds
(to a greater or lesser degree, depending on
the context), how professional is it to air your
thoughts on a given subject in a professional
workplace?

On Professionalism
For an industry that prides itself on its analytical ability and abstract mental processing, we often
don’t do a great job applying that mental skill to the most important element of the programmer’s
tool chest—that is, ourselves. As I write this, a well-known software prognosticator and talking

(Continued on page 73)

Managed Coder74

MANAGED CODER

